SAXTON, Harry, SCHENKEL, Torsten, HALLIDAY, Ian and XU, Xu (2023). Personalised parameter estimation of the cardiovascular system: Leveraging data assimilation and sensitivity analysis. Journal of Computational Science, 74: 102158. [Article]
Documents
32608:626196
PDF
Schenkel-PersonalisedParameterEstimation(VoR).pdf - Published Version
Available under License Creative Commons Attribution.
Schenkel-PersonalisedParameterEstimation(VoR).pdf - Published Version
Available under License Creative Commons Attribution.
Download (46MB) | Preview
Abstract
Detailed models of dynamical systems used in the life sciences may include hundreds of state variables and many input parameters, often with physical meanings. Therefore, efficient and unique input parameter identification, from experimental data, is an essential but challenging task for this class of models. This study presents a comprehensive analysis of a nine-dimensional single ventricle lumped-parameter model, representing the systemic circulation. This model is formulated in terms of differential algebraic equations, often found in other areas of the life sciences. We introduce a novel computational algorithm designed to incorporate patient-specific beat-to-beat variability into model investigations, utilising the Unscented Kalman Filter (UKF) for efficient parameter estimation. Our findings demonstrate the exceptional adaptability of the UKF to severe parameter perturbations, representing significant physiological changes. Furthermore, we provide novel insights into the continuous sensitivity of model input parameters, illustrating the robustness and efficacy of UKF. The monitoring of a patient’s physiological state, with minimal delay, becomes feasible, by incorporating patient-specific measurements and leveraging the UKF. The workflow presented in this paper enables prompt identification of pathophysiological conditions and will improve patient care.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |