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A B S T R A C T

Detailed models of dynamical systems used in the life sciences may include hundreds of state variables
and many input parameters, often with physical meanings. Therefore, efficient and unique input parameter
identification, from experimental data, is an essential but challenging task for this class of models. This study
presents a comprehensive analysis of a nine-dimensional single ventricle lumped-parameter model, representing
the systemic circulation. This model is formulated in terms of differential algebraic equations, often found
in other areas of the life sciences. We introduce a novel computational algorithm designed to incorporate
patient-specific beat-to-beat variability into model investigations, utilising the Unscented Kalman Filter (UKF)
for efficient parameter estimation. Our findings demonstrate the exceptional adaptability of the UKF to
severe parameter perturbations, representing significant physiological changes. Furthermore, we provide novel
insights into the continuous sensitivity of model input parameters, illustrating the robustness and efficacy of
UKF. The monitoring of a patient’s physiological state, with minimal delay, becomes feasible, by incorporating
patient-specific measurements and leveraging the UKF. The workflow presented in this paper enables prompt
identification of pathophysiological conditions and will improve patient care.
1. Introduction

Mechanistic models of the cardiovascular system (CVS) can ac-
curately represent patient physiology when supplied with estimated
input parameters from clinical data. Lumped parameter models (LPMs)
are widely used to assess global haemodynamics [1,2]. These LPMs
combine low-order sub-models to describe haemodynamic effects using
passive electrical analogues: resistors for flow dissipation, capacitors
for organ compliance, and inductors for flow inertial effects. Each
component in a cardiovascular LPM corresponds to distinct physiol-
ogy [1,2]. LPMs, typically 0D, can be coupled with 1D and 3D fluid
models, facilitating applications like surgical planning [3,4]. They are
used to investigate conditions including pulmonary hypertension, atrial
fibrillation, single ventricle physiology, and fetal circulation [5–11].

CV LPMs are valuable in applications involving time-varying input
parameters. The incorporation of time-varying input parameters pro-
vides important insights into the adaptive nature of the CV system.
Accounting for time variation of input parameters allows clinicians and
researchers to study CV dynamics and system response to changing
conditions. Here, a notable application is CV adaptation to blood

∗ Corresponding author.
E-mail address: c1050449@hallam.shu.ac.uk (H. Saxton).

volume shifts. For instance, in the context of a head-up tilt test, per-
formed to diagnose orthostatic intolerance [12], time-varying models
can simulate blood mis-allocation caused by the dynamic changes in
gravitational head associated with posture, which enables clinicians to
test hypotheses.

One seeks to personalise LPM models to achieve clinical impact [13]
using input parameters which are biomarkers of patient (patho)physio-
logy, which may be used to stratify cohorts or support clinician de-
cisions. Some LPM input parameters may be estimated from clinical
measurements, such that the discrepancies between the model outputs
and the measurements are minimised. This personalisaiton process (for-
mally, a solution of the inverse operation of the model) is challenging,
particularly when the number of input parameters to be estimated is
large. LPM input parameters are typically personalised by minimisation
of an 𝐿2 norm of some weighted difference between measured (often
very noisy and self-inconsistent) target patient data and a correspond-
ing model prediction [14–16]. A LPM model’s cost function level-set is
vailable online 28 October 2023
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a hyper-surface in the model’s input parameter space (which has a di-
mension equal to the number of input parameters), and personalisation
amounts to an attempt to locate its global minimum.

To personalise a model, one investigates the sensitivity of input
parameters to specific output metrics. Sensitivity analysis (SA) studies
how a change in a model’s (often discrete) output can be apportioned
to different sources of uncertainty among many input parameters [17].
Two types of SA exist: (i) local SA addresses sensitivity relative to
changes in a single input parameter value, varied one at a time, about
a fixed operating point, and (ii) global SA examines sensitivity over
the entire parameter distribution [18]. For personalised medicine, it
is considered essential to examine the whole parameter space [19].
SA can reveal influential parameters in sets, where the members all
have similar effects across surveyed outputs. When an input parameter
strongly impacts the model outputs, it is deemed identifiable, i.e., it
can be uniquely identified for the patient to whom the target data
applies. Discrete clinical measurements like stroke volume (SV), mean
arterial pressure (MAP), and cardiac output (CO), are commonly used
in LPM models, to investigate the effects of input parameters [20–
22]. Continuous, possibly invasive measurements, like arterial and
ventricular pressure, volume, and flow, are also used.

There is a growing trend towards utilising data assimilation methods
(DA) to estimate personalised input parameters of models. While DA
methods do not provide a direct metric for assessing the influence
of input parameters, they have demonstrated effectiveness in recov-
ering input parameters from experimental data [23]. This stems from
their ability to leverage full time-varying measurements. DA has been
successfully applied to various CV problems, including the estimation
of Windkessel input parameters [24,25] and closed-loop models of
single ventricle physiology [26]. Here, our focus lies on the Unscented
Kalman Filter (UKF) [27], primarily due to its ability to handle the
non-linearities introduced by the valvular and ventricle functions of the
LPM.

Conventional LPM models often assume a constant heart rate, which
does not accurately reflect CV system dynamics [28]. To address this
limitation, Pant et al. [26] proposed a method to estimate model
parameters with two varying heart rates, by employing two UKFs in
parallel. However, there is currently a gap in the literature regarding
the inclusion of personalised heart rate measurements, which are easily
obtainable in a clinical setting [29]. When investigating time-varying
parameters, Matzuka et al. [30] utilised the Ensemble Kalman Filter to
estimate input parameters involved in baro-reflex regulation. Matzuka’s
approach incorporates the inherent time-varying nature of the parame-
ters, due to the model’s embedded physics. If LPMs are to be integrated
into clinical workflows, they must be able to adapt perturbations to
their dynamics that originate outside the model. For instance, during
a medical procedure, suppose there is a drop in arterial compliance
or vascular resistance; the UKF should be able to re-calibrate to this
change, based upon a feed of patient data and then provide the clini-
cian with re-estimated input parameters, that accurately represent the
patient’s evolving physiological state.

Here, we take an established generic differential equation model
of the systemic circulation, and layer-on a novel approach to inte-
grate patient-specific heart rate measurements into it. We evaluate the
sensitivity of the model input parameters and explore the continuous
outputs. We utilise synthetic, noisy data representative of patient sce-
narios to evaluate the accuracy of input parameters recovered using
the UKF. Additionally, we assess our UKF’s robustness by perturbing
our base model’s input parameters, to represent severe changes in a pa-
tient’s physiological state. Finally, we discuss the potential integration
of our method into a clinical workflow.

The structure of this paper is as follows. Section 2 provides a
detailed explanation of the methods and implementation used in this
study. In Section 3, we present the results obtained from our analysis.
Finally, in Section 4, we provide a comprehensive comparison and
discussion of the optimal sets of input parameters obtained through our
2

proposed methods.
2. Methods

In Section 2.1, we describe the single ventricle model formulated
as differential algebraic equations. It is used to simulate the systemic
circulation in this work. In Section 2.2 we explain how we modify
the computational model to include patient-specific heart rates, on a
beat-to-beat basis. We then detail how realistic synthetic patient data
are generated and how input parameters are perturbed to test the
robustness and efficiency of the UKF, in Section 2.3. In Section 2.4,
we explain how both continuous and time averaged SA is used to
analyse the single ventricle model. The UKF is described in Section 2.5,
where we pay particular attention to how representative patient data
are incorporated into the computational algorithm.

All computation was performed using Julia1 [31], employing pack-
ages DifferentialEquations.jl [32], GlobalSensitivity.jl [33] and Quasi-
MonteCarlo.jl to solve the dynamical systems, calculate the sensitivity
indices and sample input parameter space. Specifically, simulations
were solved using Rodas5 algorithm [34], with relative and absolute
tolerances set to 10−8. We used a fixed time step of 𝑑𝑡 = 0.0005 s
and 15 cardiac cycle times were generated. We implemented parameter
perturbations from 𝑡 ≥ 8 s. To compute the continuous sensitivity
analysis, we analysed cycles 10 to 13 at a constant time step of 0.0005s
to ensure sufficient accuracy. We used Makie.jl to visualise results [35].

2.1. Single ventricle model

Given a dynamical system has the generic form:
𝑑
𝑑𝑡
𝑋(𝑡; 𝜃) = 𝑓

(

𝑋(𝑡; 𝜃); 𝜃
)

, 𝑌 (𝑡; 𝜃) = ℎ(𝑋(𝑡; 𝜃)), (1)

where 𝑋, 𝑌 , 𝑓 , 𝜃 and ℎ represent the state variable vector, the output
vector, the dynamical system functions, the input parameter vector and
the measurement operator, respectively.

We study a three-compartment system-level, ordinary differential
equation based, electrical analogue cardiovascular model, after Bjordals-
bakke et al. [22] (see Fig. 1). The state of each compartment is specified
by its time-dependant dynamic pressure 𝑃 (mmHg), an inlet flow 𝑄
(mL/s) and a volume 𝑉 (mL):

𝑋𝑖(𝑡) =
(

𝑉𝑖(𝑡), 𝑃𝑖(𝑡), 𝑄𝑖(𝑡)
)

, 𝑖 ∈ {𝑙𝑣, 𝑠𝑎, 𝑠𝑣}, (2)

here 𝑙𝑣 denotes the left ventricle, 𝑠𝑎 the systemic arteries and 𝑠𝑣 the
enous system. Formally, 𝑡 is a continuous variable.

The equations relating to the passive compartmental state variables
ake the following forms:
𝑑𝑉𝑠,𝑖
𝑑𝑡

= 𝑄𝑖 −𝑄𝑖+1,
𝑑𝑃𝑖
𝑑𝑡

= 1
𝐶𝑖

(𝑄𝑖 −𝑄𝑖+1), 𝑄𝑖 =
𝑃𝑖 − 𝑃𝑖+1

𝑅𝑖
, (3)

where the subscripts (𝑖 − 1), 𝑖, (𝑖 + 1) represent the proximal, present
nd distal system compartments, respectively. 𝑉𝑠,𝑖 (mL) denotes the
irculating (stressed) volume [36], 𝐶𝑖 (ml/mmHg) and 𝑅𝑖 (mmHgs/mL)
enote compartmental compliance and the Ohmic resistance between
ompartments 𝑖 and (𝑖 + 1). See Fig. 1 and Table 1.

In Fig. 1, we use a C-R-C Windkessel [37] to represent the sys-
temic circulation. The flow in and out of the active left ventricle is
controlled by the mitral and aortic valves, respectively. The valves
are modelled as diodes, with Ohmic resistance under forward bias and
infinite resistance under reverse bias:

𝑄𝑖 =

{ 𝑃𝑖−𝑃𝑖+1
𝑅𝑣𝑎𝑙

, 𝑃𝑖 > 𝑃𝑖+1,

0 𝑃𝑖 ≤ 𝑃𝑖+1,
(4)

where 𝑅𝑣𝑎𝑙 represents the resistance across the respective valves.
Let us consider the active model compartment. The dynamics of

the left ventricle is described by a time-varying compliance 𝐶(𝑡), or
elastance, 𝐸(𝑡) (mmHg/ml) (elastance is the reciprocal of compliance)

1 Code is available at https://github.com/H-Sax/UKF_SpecialEdition

https://github.com/H-Sax/UKF_SpecialEdition
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𝜏

Fig. 1. Schematic representation of both the simple and advanced electrical analogue models utilised in this work. The system is a nine parameter representation of the systemic
circulation, originally presented by Bjordalsbakke et al. [22].
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Table 1
Model input parameters.

Parameter 𝜃 (units) Description Initial value

𝐸𝑚𝑎𝑥
[

mmHg
ml

]

Maximal ventricular contractility 1.5

𝐸𝑚𝑖𝑛
[

mmHg
ml

]

Minimal ventricular contractility 0.03

𝜏𝑒𝑠 (s) End systolic time 0.3

𝜏𝑒𝑝 (s) End pulse time 0.45

𝑍𝑎𝑜

[

mmHg s
ml

]

Aortic valve resistance 0.033

𝑅𝑚𝑣
[

mmHg s
ml

]

Mitral valve resistance 0.06

𝑅𝑠
[

mmHg s
ml

]

Systemic resistance 1.11

𝐶𝑠𝑎
[

ml
mmHg

]

Systemic compliance 1.13

𝐶𝑠𝑣
[

ml
mmHg

]

Venous compliance 11.0

Each input parameter’s unit is stated alongside a chosen initial value for the simplified
systemic circulation model. 𝜏 is the cardiac cycle length, which is fixed such that
= 1 s. The ventricular shift parameter 𝐸shift = 0 (s) as no atrium is present in the

simplified 9 parameter model.

which determines the change in pressure for a given change in the
volume [36]:

𝐸𝑙𝑣(𝑡) =
𝑃𝑙𝑣(𝑡)

𝑉𝑙𝑣(𝑡) − 𝑉0
=

𝑃𝑙𝑣(𝑡)
𝑉𝑙𝑣,𝑠(𝑡)

, (5)

where 𝑉0 & 𝑉𝑙𝑣,𝑠(𝑡) represent the unstressed and stressed volumes in the
left ventricle, respectively. 𝐸(𝑡) may be described in an analytical form
as follows [38]:

𝐸(𝑡) = (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)⋅𝑒(𝑡) + 𝐸𝑚𝑖𝑛,

𝑒(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2 (1 − cos( 𝜋𝑡𝜏𝑒𝑠

)), 0 ≤ 𝑡 < 𝜏𝑒𝑠,
1
2 (1 + cos( 𝜋(𝑡−𝜏𝑒𝑠)𝜏𝑒𝑝−𝜏𝑒𝑠

)), 𝜏𝑒𝑠 ≤ 𝑡 < 𝜏𝑒𝑝,

0, 𝜏𝑒𝑝 ≤ 𝑡 < 𝜏,

(6)

where 𝑒(𝑡; 𝜏𝑒𝑠, 𝜏𝑒𝑝) is the activation function for both the ventricle, which
is parameterised by the end systolic and end pulse timing parameters
𝜏𝑒𝑠 and 𝜏𝑒𝑝 respectively. Computationally, the time step is updated as:
𝑡 = (𝑡 + (1 − 𝐸𝑠ℎ𝑖𝑓 𝑡) ∗ 𝜏)mod 𝜏.

The elastance function is defined over one cardiac cycle, i.e., time
𝑡 ∈ [0, 𝜏] with 𝜏 being the length of the cardiac cycle. 𝜏 is often fixed
as 1 second which is not physiologically realistic: we return to this
issue in Section 2.2. The time shift parameter 𝐸shift controls when 𝑒(𝑡) is
activated. 𝐸shift is fixed at 0 for the left ventricle. Maximal contractility,
𝐸𝑚𝑎𝑥, and minimal contractility, 𝐸𝑚𝑖𝑛, both control the left ventricular
elastance extrema.

2.2. Personalised cardiac cycle length

In the clinic, a personalised cardiac cycle length time is obtained
non-invasively [29]- heart rate (HR) is an intuitive measurement of a
patient’s physiological state, from which one obtains the cardiac cycle
time length as:

𝜏 = 60 (7)
3

HR 𝑌
with HRis measured in BPM and 𝜏 can vary from heartbeat to heartbeat
(Heart Rate Variability, HRV). This means that the active chamber
elastance equations, defined in Eq. (6) change between each CV cycle.
While these measurements are taken from a patient in the clinic, we
synthesise cardiac cycle lengths as

𝜏𝑖 ∼ 𝑈 (0.8, 1.1), 𝑖 = 1,… , 𝑛, (8)

where 𝜏𝑖 represents the cardiac cycle length at cycle 𝑖. Above, 𝑈 denotes
the uniform distribution. We construct and simulate an 𝑛-dimensional
vector 𝑡𝜏,𝑛, of cumulative times such that the vector satisfies the prop-
rty

𝜏,𝑛 =
𝑛
∑

𝑖=1
𝜏𝑖. (9)

To implement the algorithm we define a global variable 𝜏 to represent
he cycle time length at a cycle 𝑖. We further define a global variable 𝑡𝑟
hich represents a reset time for which the active chamber is to begin

ts cardiac cycle again. The cardiac cycle is made up of three distinct
hases: systole, diastole and passive filling. With this algorithm, it is
ssumed that the passive filling phase is reduced and the distinct phases
f systole and diastole will occur. The varying cardiac cycle lengths are
mplemented as a callback such that when the condition is satisfied:
ntegrator.𝑡 − 𝑡𝑟 > 𝜏, w here integrator.𝑡 is the internal time variable
f the differential equation solver. We then find the new cardiac cycle
ime such that

= 𝑡𝜏,𝑖+1 − 𝑡𝜏,𝑖 (10)

nd the reset time becomes

𝑟 = 𝑡𝜏,𝑖. (11)

n Eq. (6), the internal time variable 𝑡 becomes

= 𝑡 − 𝑡𝑟. (12)

mplementing Eq. (11) is a vital step which informs the elastance
o reset at the previous cardiac cycle length, 𝜏𝑖 and is defined over
he new cardiac cycle length. For specific implementation guidance,
lease visit the code for this work at https://github.com/H-Sax/UKF_
pecialEdition.

In reality, the personalised HR would not act in such a random
anner, it is more likely to either monotonically increase or decrease.
herefore implementing HR in this way allows us to cope with a worst
ase scenario, facilitating a more stringent test of the UKF than in a
linical setting.

.3. Parameter perturbations & synthetic data

We derive noisy synthetic patient waveform data from forward
odel solutions characterised (note, for nominally true parameter val-
es) for 𝑙𝑣 pressure 𝑃𝑙𝑣, 𝑙𝑣 volume 𝑉𝑙𝑣 and systemic pressure 𝑃𝑠𝑎 for
5 cycles, representing continuous clinical measurements from (say)
chocardiography for 𝑉𝑙𝑣 [39] and arterial line measurement for 𝑃𝑠𝑎
40] (Cardiac catheterisation can be performed to extract 𝑃𝑙𝑣 [41]). To
lign with the purpose of a UKF our forward numerical solutions are
ubject to multiplicative Gaussian corruption as follows:
𝑚 = ℎ(𝑋(𝑡 , 𝜃 )), 𝑌 𝑛 = ℎ(𝑋(𝑡 , 𝜃 )) ⋅ (1 + 𝜓 ). (13)
𝑗 𝑗 𝑡 𝑗 𝑗 𝑡 𝑗

https://github.com/H-Sax/UKF_SpecialEdition
https://github.com/H-Sax/UKF_SpecialEdition
https://github.com/H-Sax/UKF_SpecialEdition
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Fig. 2. Parameter Perturbation - We show the perturbation applied to the min-
mal contractility parameter 𝐸𝑚𝑖𝑛. From 𝑡 > 8, the perturbation becomes positive,
emonstrating an increase in minimal ventricular contractility.

bove, the subscript 𝑗 denotes sampling time, deemed to be the discrete
ime of the numerical solution, superscript 𝑛 indicates a noisy solution
nd superscript 𝑚 denotes the measured, un-corrupted numerical solu-
ion. 𝜓𝑗 is an independent, normally-distributed random variable, with
ero mean and a standard deviation 0.025, which is typical [25].

We propose two types of perturbation to the input parameters
pplied from 𝑡 > 8 (having run the model to steady state) until the
nd cycle. The first perturbation we apply is to the timing parameters
f the active chamber parameters, such that for every cycle 𝑡 > 8 we
pply a random value for 𝜏𝑒𝑠 and 𝜏𝑒𝑝 satisfying the distributions

𝑒𝑠 ∼ 𝑁(0.3, 0.032), 𝜏𝑒𝑝 ∼ 𝑁(0.45, 0.032). (14)

he second parameter perturbation applied to the non-timing param-
ters of the model describes a gradual increase from 𝑡 > 8 and is
epresented in Fig. 2 and Eq. (15):

(𝑡) = 1
2
sin

( 𝑡 − 𝑡0
4

)

+ 𝑝0, (15)

where 𝑝(𝑡) represents the value of an input parameter (see Table 1)
at time 𝑡. 𝑡0 represents the time at which the perturbation is applied.
𝑡0 = 8. 𝑝0 represents the true value of the input parameter, before it is
perturbed, i.e., for 𝐸𝑚𝑖𝑛, 𝑝0 = 0.03.

2.4. Sensitivity analysis

Consider discrete outputs: 𝑌𝑖 = 𝑌 (𝑡𝑖). In our model setting, these
outputs are normally clinical measurements like SV, MAP and CO. 𝑌𝑖
is determined by the values of input parameters, which are assumed to
be continuously distributed over some physiological range, so one can
view the 𝑌𝑖 = 𝑌 (𝑡𝑖) as integrable multivariate functions. A variance-
based approach is employed to calculate the first-order or total-order
effect of a generic input parameter 𝜃𝑖. The complementary set, denoted
as 𝜃𝑐𝑖 , refers to all other model inputs excluding 𝜃𝑖. The first-order
sensitivity index is:

𝑆𝑖 = Var𝜃𝑖 (𝐸𝜃𝑐𝑖 (𝑌 |𝜃𝑖)), (16)

where 𝐸 represents the expectation operator. The inner expectation
operator determines the mean of 𝑌 across all possible values of 𝜃𝑐𝑖 ,
keeping 𝜃𝑖 fixed. The outer variance considers all possible values of 𝜃𝑖.
In the sequel, we will utilise the identity [42]:

Var𝜃𝑖 (𝐸𝜃𝑐𝑖 (𝑌 |𝜃𝑖)) + 𝐸𝜃𝑖 (Var𝜃𝑐𝑖 (𝑌 |𝜃𝑖)) = Var(𝑌 ), (17)

where Var𝜃𝑖 (𝐸𝜃𝑐𝑖 (𝑌 |𝜃𝑖)) quantifies the first-order (additive) effects of 𝜃𝑖
on the model outputs.
4

Another commonly used measure of variance is the total-order
estimator, initially introduced by Homma [43]:

𝑆𝑇 ,𝑖 = 𝐸𝜃𝑐𝑖 (Var𝜃𝑖 (𝑌 |𝜃
𝑐
𝑖 )) = Var(𝑌 ) − Var𝜃𝑐𝑖 (𝐸𝜃𝑖 (𝑌 |𝜃

𝑐
𝑖 )), (18)

where 𝑆𝑇 ,𝑖 captures the total effect of both the first-order effects and
higher-order effects (multiplicative interactions) of the input parameter
𝜃𝑖. This can be understood by recognising that Var𝜃𝑐𝑖 (𝐸𝜃𝑖 (𝑌 |𝜃

𝑐
𝑖 )) repre-

sents the first-order effect of 𝜃𝑐𝑖 . Therefore, Var(𝑌 ) − Var𝜃𝑐𝑖 (𝐸𝜃𝑖 (𝑌 |𝜃
𝑐
𝑖 ))

accounts for the contribution of all terms in the variance decomposition
that include the input 𝜃𝑖. The equations can be derived by utilising a
Hoeffding-Sobol decomposition, and utilising the fact that each term is
assumed to be square-integrable. See e.g. [44,45].

Let us consider continuous measurements such as arterial pressure
and ventricular pressure. Eck et al. [46] addressed the limitation of
the scalar sensitivity indices (Eqs. (16) and (18)) in partitioning the
variability of non-scalar quantities of interest. If one desires discrete
indices for time varying outputs, a new method is required. As the
variance is not constant over time, comparing the sensitivity indices of
input parameters at two different time points becomes challenging in
terms of quantifying the total uncertainty contributed by a specific pa-
rameter. Hence, the sensitivity coefficients (locally scaled) at two points
in time are not directly comparable, in terms of the total uncertainty
contributed by a given parameter. To overcome this issue, these authors
introduced what is known as time averaged sensitivity indices:

𝑆[1,𝑇 ],𝑖 →

∑

𝑘 𝑆[1,𝑇 ],𝑖Var(𝑌 (𝑡𝑘))
∑

𝑘 Var(𝑌 (𝑡𝑘))
, (19)

where 𝑆1 represents the first-order indices which inform on relative
influence of every input (total order indices, 𝑆𝑇 , inform on relative
influence of every input parameters interactions with others). 𝑌 denotes
the measured model continuous outputs and 𝑖 identifies the particular
input parameter whose sensitivity is at issue. We are still interested in
how the sensitivity indices vary between two time points and so define
the sensitivity indices

𝑆[1,𝑇 ],𝑖 → 𝑆[1,𝑇 ],𝑖Var(𝑌 (𝑡𝑘)) (20)

his metric then defines the sensitivity of an input parameter between
wo time points, which allows us to evaluate the change in influence
uring a cardiac cycle, given the presence of beat-to-beat variation.

.5. Unscented Kalman filter

The UKF is a data assimilation method to unify model results
ith available measurements, to provide an improved estimation of
dynamical system [47] states and parameters. The UKF consists of

wo distinct steps, firstly the unscented transform (UT) calculates the
tatistics of an assumed Gaussian random variable that undergoes a
on-linear transformation [48]. Both multiplicative and additive noise
as been investigated with UKF, we assume additive noise throughout
he whole model, which is accepted practice for biological systems [49–
1]. See below for a description with particular attention given to the
nfluence of patient-specific measurements and how this method could
e used to create clinical impact.

We generate an augmented vector 𝑥 = [𝑋, 𝜃], where 𝑋 and 𝜃
are the state variables and input parameters; see (1). We assume that
the augmented state vector 𝑥 is a Gaussian random variable (GRV) of
dimension 𝐿 where 𝐿 = dim(𝑋) + dim(𝜃). Now consider propagating
the augmented state-vector through the non-linear function 𝑓 . Here
and for most biological systems, the non-linear function is represented
by a set of ODEs. We measure 𝑃𝑙𝑣, 𝑃𝑠𝑎, 𝑉𝑙𝑣, 𝑌 (𝑡) = ℎ(𝑥(𝑡)), where ℎ
is the previously-identified operator. We acquire the ODE solution to
𝑃𝑙𝑣, 𝑃𝑠𝑎 and 𝑉𝑙𝑣. Assume our GRV has a mean 𝑥𝜇 and a covariance 𝑃𝑥.
To compute the statistics on the propagation of the GRV through 𝑓 , we
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construct a matrix 𝜒 of 2𝐿+ 1 sigma vectors 𝜒𝑖, where 𝑖 represents the
𝑖th column of the matrix according to the following, for 𝑡 = 0,… ,∞:

𝜒0,𝑡 = 𝑥𝐴𝜇,𝑡, 𝜒𝑖1,𝑡 = 𝑥𝐴𝜇,𝑡 +
(√

(𝐿 + 𝜆)𝑃𝐴
𝑥,𝑡

)

𝑗
, 𝜒𝑖2,𝑡 = 𝑥𝐴𝜇,𝑡 −

(√

(𝐿 + 𝜆)𝑃𝐴
𝑥,𝑡

)

𝑗
,

𝑖1 = 𝑗 = 1,… , 𝐿, 𝑖2 = 𝐿 + 1,… , 2𝐿,

(21)

where the superscript 𝐴 represents the assimilated state and param-
eter vector. The GRV sigma vectors now represent a minimal set of
carefully chosen sample points, which completely capture the true
mean and covariance of the GRV. When they are propagated through
the true non-linear system, the posterior mean and covariance are
captured accurately to the 3rd order (Taylor series expansion) for any
non-linearity. A derivation of the UKF can be found in [52].

Next, we compute a set of corresponding weights 𝑊𝑖:

𝑊 𝜇
0 = 𝜆

𝐿 + 𝜆
, 𝑊 𝑐

0 = 𝜆
𝐿 + 𝜆

+ (1 + 𝛽 − 𝛼2), 𝑊 𝜇
𝑖 = 𝑊 𝑐

𝑖 = 1
2(𝐿 + 𝜆)

,

𝑖 = 1,… , 2𝐿, 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿,
(22)

where 𝜆 is a scaling parameter, 𝛼 determines the spread of sigma points
around 𝑥𝜇 (we use 𝛼 = 10−1). 𝜅 is another scaling parameter (here
𝜅 = 0) and 𝛽 incorporate prior knowledge of which distribution 𝑥
follows. Here 𝛽 = 2 is used as this is optimal for GRV. The matrix square
root is performed using a Cholesky decomposition [53] which requires
the matrix to be positive definite.

Next, we propagate each sigma vector through the ODE system such
that 𝛶𝑖 = 𝑓 (𝜒𝑖) and determine the mean and covariance of 𝑌 , using the
weighted sample mean and covariance of the propagated sigma vectors.
Before we can do this, we must first define the prediction step in the
algorithm

̂𝑡+1|𝑡 = 𝑓 (𝜒𝑡), 𝛶𝑡+1|𝑡 = ℎ(𝜒̂𝑡+1|𝑡). (23)

The above have corresponding mean and sample covariance:

𝑥𝜇,𝑡+1 =
2𝐿
∑

𝑖=0
𝑊 𝜇
𝑖 𝜒̂𝑖,𝑡+1|𝑡,

𝑥,𝑡+1 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖 [𝜒̂𝑖,𝑡+1|𝑡 − 𝑥𝜇,𝑡+1][𝜒̂𝑖,𝑡+1|𝑡 − 𝑥𝜇,𝑡+1]

𝑇 + 𝛿𝑄𝐼,

𝑌 𝜇𝑡+1 =
2𝐿
∑

𝑖=0
𝑊 𝜇
𝑖 𝛶𝑖,𝑡+1|𝑡,

𝑃𝑌 ,𝑡+1 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖 [𝛶𝑖,𝑡+1|𝑡 − 𝑌

𝜇,𝑡+1][𝛶𝑖,𝑡+1|𝑡 − 𝑌 𝜇,𝑡+1]𝑇 + 𝑅,

𝑃𝑥𝑌 ,𝑡+1 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖 [𝜒̂𝑖,𝑡+1|𝑡 − 𝑥𝜇,𝑡+1][𝛶𝑖,𝑡+1|𝑡 − 𝑌

𝜇,𝑡+1]𝑇 ,

(24)

where 𝑃𝑥𝑌 is designated the cross correlation matrix. 𝑅 is the additive
oise on the predicted measurements and takes the form 𝜎2𝐼3×3 (for 3
easurements), where 𝜎 = 5. This represents the typical clinical error
resent when measuring ventricular/aortic pressure and the ventricular
olume [54]. 𝛿𝑄𝐼 is considered a regularisation term to avoid sigma
oint collapse [51,55], where 𝐼 is an 𝐿 × 𝐿 identity matrix with 𝛿𝑄 =

10−8.
We now correct the prediction that has been made by assimilating

the noisy data generated in Eq. (13). The Kalman gain matrix is
calculated as

𝐾𝑡+1 = 𝑃𝑥𝑌 ,𝑡+1(𝑃𝑌 ,𝑡+1)−1,

hich then leads to:
𝐴
𝜇,𝑡+1 = 𝑥𝜇,𝑡+1 +𝐾𝑡+1(𝑌

𝑛
𝑡+1 − 𝑌

𝜇
𝑡+1),

𝑃𝐴𝑥,𝑡+1 = 𝑃𝑥,𝑡+1 −𝐾𝑡+1𝑃𝑌 ,𝑡+1𝐾𝑇
𝑡+1,

(25)

here 𝑥𝐴𝜇,𝑡+1 and 𝑃𝐴𝑥,𝑡+1 are used to generate new sigma points for the 𝑡+
1 time point. In the assimilation step defined in Eq. (25), 𝑌 𝑛 represents
5

𝑡+1
Table 2
Normal (Gaussian) distribution parameters of the
single ventricle model.

Parameter 𝜃 𝜎

𝜏𝑒𝑠 0.3 0.01
𝜏𝑒𝑝 0.45 0.01
𝑅𝑚𝑣 0.06 0.01
𝑍𝑎𝑜 0.033 0.01
𝑅𝑠 1.11 0.3
𝐶𝑠𝑎 1.13 0.3
𝐶𝑠𝑣 11.0 0.3
𝐸𝑚𝑎𝑥 1.5 0.3
𝐸𝑚𝑖𝑛 0.03 0.01

𝜃 - Initial mean from [56]. 𝜎 - Standard deviation from
[25,26].

the data which are specific to a patient. Therefore we are correcting
the value parameter/state estimation with the measured patient data
(represented by the noisy synthetic data in this case). This also allows
us to make predictions about compartments in which experimental data
are not available, for example aortic valve resistance 𝑍𝑎𝑜. We defer
further exploration of this point to the discussion in Section 4. Given
the GRV assumption which is needed for the UKF we must transform
the deterministic input parameters specified in Table 1 to the Gaussian
setting. Each input is then transformed as

𝜃𝑁𝑖 ∼ 𝑁(𝜃𝑖, 𝜎2𝑖 ),

where 𝜃𝑁𝑖 is the normally distributed input parameter 𝑖 with an initial
mean 𝜃𝑖 and variance 𝜎2𝑖 , respectively. The mean of the normal distri-
bution is taken from the literature values as shown in Table 1 [56].
The parameter variance is selected to reflect the uncertainty in the
mean parameter value and taken from existing literature [25,26],
where larger variances are specified for input parameters with higher
uncertainty. This normal distribution reflects the prior belief about
the input parameters before any measurements are incorporated. As
the UKF iterates, the mean and variance are updated to reflect infor-
mation gained from new measurements. The initial distribution seeds
the estimation process, providing a starting point that is adjusted as
more measurement data become available. The means and standard
deviations prescribed for each input parameter based on this approach
can be found in Table 2.

To implement the UKF, we take advantage of the versatile SciML
ecosystem within Julia. Here we implement a discrete callback which
performs the Kalman filtration at each time point and returns the
corrected result. This has been shown to contribute negligible com-
putational time associated with the callback, which demonstrates our
ability to produce the result in close-to-real time. Most authors man-
ually discretise the ODE system to transform it into a discrete time
system for the implementation of an UKF. Implementing a callback
allows us to take advantage of advanced ODE solvers within package
DifferentialEquations.jl with improved accuracy. An important point to
note here is that there are two distinct steps in our workflow, (1) we
perform a first solve of the dynamical system to generate the synthetic
data, including perturbed input parameters along with the synthetically
generated personalised HRs. This stage represents experimental data
collection. (2) These data are then stored for the second stage, when we
solve the model and call the UKF. In this step, we estimate the states
and input parameters of the model, given the personalised HRs and
perturbed input parameters. The aim is that the algorithm can capture
the dynamical effects pf changing input parameters which represent
evolving physiological conditions of patients.

To evaluate the effectiveness of the UKF estimation procedure we
employ the root mean squared error as found below:

𝑅𝑀𝑆𝐸 =

√

(𝜃𝑖 − 𝑥𝐴𝜇,𝑖)2 , (26)

𝑛
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Fig. 3. Systemic arterial pressure - The figure displays the arterial pressure for a
base state simulation (blue) and when blood volume is halved and systemic resistance
is doubled (orange).

where 𝜃𝑖 is the true value of the 𝑖𝑡ℎ input parameter, 𝑥𝐴𝜇,𝑖 is the
ssimilated estimate of the 𝑖𝑡ℎ input parameter and n is the length of
he assimilated vector. In the case of perturbing the input parameter
y the continuous function 𝑝(𝑡) found in Eq. (15) 𝜃𝑖 is replaced by 𝑝(𝑡)
rom 𝑡 > 8 which is when the perturbation is applied. This allows us
o compare parameter estimates before and after the perturbation. In
he case of the timing parameters being perturbed, we compare the
ssimilated estimate at the start of each cardiac cycle for 𝑡 > 8 to the
rue perturbed value of the timing parameters and report the average
MSE. The RMSE provides a measure of the average difference between

he estimated values and the true values of the input parameters. The
nput parameter with the lower RMSE value indicates the mot effective
stimation as the input parameter aligns more closely to the true value.

. Results

Within this section, we conduct the continuous sensitivity analysis
f our model, examine the UKFs ability to recover input parameters
hen no perturbations are present and analyse the robustness of the
odel investigated (Section 3.1). We then examine the ability of UKF

o recover true input parameters when they are perturbed from base
tates (Section 3.2). For each case explored we display a Table of
MSE for each input parameter before and after a perturbation has
een applied. The values presented in the Table are accurate to 1sf.
ll results presented below are discussed in full within Section 4.

.1. Base state

Fig. 3 displays the case where a patient may be haemorrhaging
lood, so blood volume drops and as a consequence, systemic resistance
ncreases in order to maintain arterial pressure (denoted by the orange
urve). For the simulation of this situation, initial blood volume was
alved and the systemic resistance was doubled. The mean values
f the arterial pressure for the base state and the pathophysiological
tate were 97.8 mmHg and 98.2 mmHg. Given, this case examined
s very unlikely to occur in clinic, the model response is in line with
xpectation providing confidence of the affected model to adapt to
ther pathophysiological states.

Fig. 4 shows the implementation of the UKF when no parameter
erturbations are present- only beat-to-beat variability. Evidently, the
nput parameters are estimated with remarkable precision from the
utset. The only parameter that deviates beyond 1% of its true value
s 𝐶𝑠𝑣, as depicted in Fig. 4G. Nonetheless, both 𝑅𝑚𝑣 (Fig. 4C) and 𝑅𝑠
Fig. 4E) exhibit noticeable deviations from their true parameter values,
ndicated by the yellow line. However, they still demonstrate superior
6

Table 3
Single ventricle base state RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 s 0.005 0.009 0.005 0.003 0.05 0.01 0.8 0.04 0.003
RMSE 𝑡 > 8 s 0.0005 0.0004 0.002 0.001 0.03 0.02 0.6 0.007 0.0006

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8 s. The second row
displays the RMSE values of the input parameters for 𝑡 > 8 s.

accuracy compared to existing medical devices [57]. Most input param-
eters exhibit consistent variance, with the exceptions in Figs. 4N, 4P,
and 4Q, which correspond partially to the input parameters that were
not estimated within 1% accuracy. Notably, certain input parameters,
as shown in Figs. 4J, 4K, 4L, 4M, 4O, and 4R, exhibit consistent periodic
variation. These input parameters, characterised by steady variance,
also demonstrate exceptional accuracy, except for 𝑅𝑚𝑣 in Fig. 4C. In
Table 3 the root mean squared error (RMSE) is displayed for all input
parameters. 𝐸𝑚𝑖𝑛 displays the smallest RMSE. 𝐶𝑠𝑣 exhibits RMSE values
an order of magnitude larger than the rest of the input parameters. It
can be observed that the RMSE decreases by an order of magnitude in
the second half of the observed time span.

In Fig. 5, we show the continuous sensitivity of the input parameters
where no perturbations are applied with respect to arterial pressure.
See Appendix for the sensitivity analysis of input parameters to the
other measurements (similar to Fig. 5). We see the sensitivity of input
parameters obeys dynamics which mimic a cardiac cycle. We see some
parameters, such as 𝜏𝑒𝑠, 𝑅𝑚𝑣, 𝑅𝑠 and 𝐶𝑠𝑎 in Figs. 5A, C, E, F, exhibit a
consistent level of sensitivity during the whole CV cycle with the 𝜏𝑒𝑠
Fig. 5A being the most influential during the whole cardiac cycle. We
see the parameters 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥, 𝑍𝑎𝑜 and 𝐶𝑠𝑣 exhibit orders of magnitude
change in sensitivity during the cycle. In Fig. 5B we see the end pulse
time 𝜏𝑒𝑝 appears to have no influence of the arterial pressure during the
whole cardiac cycle.

3.2. Parameter perturbations

Here we examine the UKF’s ability to estimate input parameters ac-
curately when they are perturbed away from the ‘‘baseline’’ value dur-
ing each cardiac cycle. We apply the perturbations defined in Eqs. (14)
and (15) from 𝑡 ≥ 8.

3.2.1. 𝜏𝑒𝑠 & 𝜏𝑒𝑝
Fig. 6 demonstrates the UKF’s ability to adapt to perturbations of

the timing parameters 𝜏𝑒𝑠 and 𝜏𝑒𝑝. The UKF adapts to the perturbed
points with exceptional ability as seen in Figs. 6A and 6B. The original
parameter values were 𝜏𝑒𝑠 = 0.35 and 𝜏𝑒𝑝 = 0.45, the perturbed values
for the cycles were 𝜏𝑒𝑠 = [0.35, 0.27, 0.27, 0.28, 0.34, 0.28, 0.31, 0.26] and
𝜏𝑒𝑝 = [0.43, 0.46, 0.47, 0.44, 0.46, 0.44, 0.43, 0.43] to 2dp. The variance
of the parameters in Figs. 6J and 6K appear consistent despite the
perturbations. Figs. 6I and 6R represent the estimation and variance of
the parameter 𝐸𝑚𝑖𝑛 respectively. There is disruption to the parameter
estimation despite the true value of 𝐸𝑚𝑖𝑛 being found during each
cardiac cycle. There is minimal disruption to the parameter variance.
We see similar behaviour with the aortic valve resistance 𝑍𝑎𝑜, and max-
imal contractility 𝐸𝑚𝑎𝑥 in Figs. 6D, 6M, 6H and 6Q respectively. The
common theme between both is that the parameter estimations return
to the true parameter values during each cardiac cycle. The estimations
of all input parameters apart from 𝐶𝑠𝑣 exhibit minimal errors. The
RMSE values in Table 4 indicate that no input parameter estimations
suffer from perturbing the timing parameters of the elastance function.
Some input parameter estimates improve as the simulation progresses.
𝐶𝑠𝑣 exhibit the worst RMSE by an order of magnitude when compared
to the other input parameter estimates.
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Fig. 4. Single Ventricle Base State Estimation - Figures A–I display the parameter estimations over the 15 cardiac cycles. The yellow and blue line represent the true and
estimated parameter values respectively. Figures J–R display the parameter covariances over the 15 cardiac cycles.
Fig. 5. Single Ventricle Base State Sensitivity - Figures A–I display the continuous parameter sensitivities with respect to the arterial pressure. All parameters which returned
0 for sensitivity are set to a value of 10−6 in order to plot a log scale.
3.2.2. 𝐸𝑚𝑖𝑛
Fig. 7 demonstrates the UKF’s ability to estimate the minimal con-

tractility 𝐸𝑚𝑖𝑛 given the perturbation defined in Eq. (15). In Fig. 7I,
we see minimal contractility traces the perturbation with excellent
accuracy. We see the perturbation also impacts the variance of the
parameter, causing a gradual increase, from when it is applied. This
7

increase in parameter variance is also present in other input parameters
(where the perturbation is not applied), seen in Figs. 7J, K, L, M, O, R.
The timing parameters of the elastance function, 𝜏𝑒𝑠 and 𝜏𝑒𝑝, appear
to diverge from the true parameter values when the perturbation is
applied, as seen in Figs. 7A and 7B. We observe all input parameter
estimates returns to the true parameter value by the final cycle at
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Fig. 6. 𝜏𝑒𝑠 & 𝜏𝑒𝑝 - Figures A–I display parameter estimations over 15 cardiac cycles with varying values for 𝜏𝑒𝑠 and 𝜏𝑒𝑝. The yellow and blue line represent the true and estimated
parameter values respectively, the blue dots represent the perturbed values on the input parameters. Figures J–R display the parameter covariances over the 15 cardiac cycles.
v
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Table 4
𝜏𝑒𝑠 & 𝜏𝑒𝑝 RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 0.01 0.009 0.008 0.003 0.2 0.02 2 0.04 0.005
RMSE 𝑡 > 8 0.03 0.02 0.007 0.004 0.06 0.009 4 0.05 0.008

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8. The second
row displays the RMSE values of the input parameters for 𝑡 > 8 after a continuous
perturbation has been applied to 𝐸𝑚𝑖𝑛.

Table 5
𝐸𝑚𝑖𝑛 RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 0.004 0.008 0.007 0.003 0.2 0.01 1 0.03 0.01
RMSE 𝑡 > 8 0.01 0.009 0.009 0.009 0.03 0.008 2 0.03 0.03

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8. The second
row displays the RMSE values of the input parameters for 𝑡 > 8 after a continuous
perturbation has been applied to 𝐸𝑚𝑖𝑛.

= 15. All other input parameters, apart from 𝐶𝑠𝑣, tend towards
heir true values with minimal error after the perturbation is applied
o 𝐸𝑚𝑖𝑛. Table 5 indicates that the UKF copes with the perturbation
ith great efficiency as the RMSE value of the perturbed parameter
𝑚𝑖𝑛 increases minimally. Overall most input parameters do not suffer
reatly, with some parameters actually improving there estimation,
fter the perturbation applied to 𝐸𝑚𝑖𝑛, with only 𝜏𝑒𝑠 exhibiting a 2.5×
ncrease in error. 𝐶𝑠𝑣 like in the base state is the input parameter with
he largest RMSE error.

.2.3. 𝐶𝑠𝑎 & 𝜏𝑒𝑝
In Fig. 8, we see perturbations applied to 𝜏𝑒𝑝 and Eq. (15) applied

o 𝐶𝑠𝑎. Fig. 8B demonstrates the UKF’s considerable ability to adapt to
iffering times which are applied to the end pulse time, 𝜏𝑒𝑝. In Fig. 8F
e see that 𝐶𝑠𝑎 is not found as accurately when the same perturbation

s applied to 𝐸𝑚𝑖𝑛, Fig. 7I. Despite 𝐶𝑠𝑎 not being found as efficiently,
he trend of gradual increase is still present in the estimated parameter.

e see minimal disruption to other input parameters in the presence
f this parameter perturbation case. 𝐶 and 𝑅 appear to diverge
8

𝑠𝑣 𝑚𝑣
Table 6
𝐶𝑠𝑎 & 𝜏𝑒𝑝 RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 0.004 0.01 0.009 0.003 0.1 0.02 2 0.03 0.002
RMSE 𝑡 > 8 0.003 0.03 0.02 0.002 0.04 0.1 3 0.007 0.004

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8. The second
row displays the RMSE values of the input parameters for 𝑡 > 8 after a continuous
perturbation has been applied to 𝐶𝑠𝑎 and discretely we perturb 𝜏𝑒𝑝.

from the true parameter estimate. In Table 6 the RMSE values indicate
the UKF struggles to capture the perturbation to 𝐶𝑠𝑎 accurately with
a 5× increase in the RMSE. The perturbation applied to 𝜏𝑒𝑝 appears to
cope well with a minimal increase in the error. Most input parameters
appear to improve their estimate of the input parameter value apart
from 𝐸𝑚𝑖𝑛 where the error increases by 2× and 𝑅𝑚𝑣 where we see the
same increase in the error, however in this case it appears 𝑅𝑚𝑣 may
be diverging. 𝐶𝑠𝑣 again is the input parameter with the largest RMSE
alue.

.2.4. 𝑅𝑠 & 𝐸𝑚𝑖𝑛
In this subsection, 𝑅𝑠 and 𝐸𝑚𝑖𝑛 are perturbed. We see exceptional

ability of the UKF to adapt to 𝐸𝑚𝑖𝑛 being perturbed by Eq. (15) but
𝑅𝑠 fails to track the perturbation as accurately as 𝐸𝑚𝑖𝑛. A majority of
input parameters in Fig. 9 converge to the truth value with minimal
error apart from 𝑅𝑚𝑣 and 𝐶𝑠𝑣. This parameter perturbation combination
causes increases in all parameter variances. The RMSE values displayed
in Table 7 indicate once again all none perturbed parameters appear
fairly resistant to the changes applied to the input parameter space,
we see a 1.67× and 1.25× increase in the RMSE for 𝜏𝑒𝑠 and 𝜏𝑒𝑝, a 2×
increase in the perturbed 𝐸𝑚𝑖𝑛 parameter and a 3.33× increase on the
RMSE value for 𝑍𝑎𝑜. The perturbed systemic resistance 𝑅𝑠 keeps the
same level of error before and after the perturbation is applied this is
due to 𝑅𝑠 failing to accurately find the true parameter value in the first
8 cycles. Then, after the perturbation is applied the 𝑅𝑠 estimation fails
to track the perturbation to the higher values, 𝑅𝑠 > 1.3. 𝐶𝑠𝑣 exhibits
the largest values of the RMSE, notably for 𝑡 > 8 we see our smallest
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Fig. 7. 𝐸𝑚𝑖𝑛 - Figures A–I show the parameter estimations over the 15 cardiac cycles with perturbed 𝐸𝑚𝑖𝑛. The yellow, blue and green line represent the true, estimated and
perturbed parameter values respectively. Figures J–R display the parameter covariances over the 15 cardiac cycles.
Fig. 8. 𝐶𝑠𝑎 & 𝜏𝑒𝑝 - Figures A–I display the parameter estimations over 15 cardiac cycles with perturbed 𝐶𝑠𝑎 and 𝜏𝑒𝑝. The yellow and blue line represent the true and estimated
parameter values respectively. The blue dots and green line represent the perturbed parameter values for 𝜏𝑒𝑝 and 𝐶𝑠𝑎. Figures J–R display the parameter covariances over the 15
cardiac cycles.
value of the RMSE yet for 𝐶𝑠𝑣. From Fig. 9G we see 𝐶𝑠𝑣 appears to tend
towards the true value before diverging again.

3.2.5. 𝜏𝑒𝑠, 𝜏𝑒𝑝 & 𝐸𝑚𝑖𝑛
Fig. 10 shows the outcome after both the timing parameters 𝜏𝑒𝑠

and 𝜏𝑒𝑝 and the minimal contractility parameter 𝐸𝑚𝑖𝑛 are perturbed.
The timing parameters 𝜏𝑒𝑠 and 𝜏𝑒𝑝 struggle to adapt to the differing
timing parameters shown in Figs. 10A and 10B. Perturbing the mini-
mal contractility parameter 𝐸 leads to an accurate estimate during
9

𝑚𝑖𝑛
every cardiac cycle. We notice the parameter estimates for other input
parameters converge with minimal error. 𝐶𝑠𝑣 diverges from the true
value in Fig. 10G. The mitral valve resistance 𝑅𝑚𝑣 appears to diverge
from the true parameter value when the perturbation is applied, but
towards the final cardiac cycle it appears to converge back towards
the true parameter value. We also notice that the variance appears to
increase in all parameters except 𝐶𝑠𝑣 - see Figs. 10J–R. The above is
mirrored in the RMSE values found in Table 8 10 we see a 16.7× and
50× increase in the RMSE value for 𝜏𝑒𝑠 and 𝜏𝑒𝑝. 𝐸𝑚𝑖𝑛 appears robust to
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Fig. 9. 𝑅𝑠 & 𝐸𝑚𝑖𝑛 - Figures A–I display the parameter estimations over the 15 cardiac cycles with perturbed 𝐸𝑚𝑖𝑛 and 𝑅𝑠. The yellow and blue line represent the true and estimated
parameter values respectively. The green lines represent the perturbed input parameter values. Figures J–R display the parameter covariances over the 15 cardiac cycles.
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Table 7
𝑅𝑠 & 𝐸𝑚𝑖𝑛 RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 0.006 0.008 0.007 0.003 0.2 0.02 1 0.04 0.02
RMSE 𝑡 > 8 0.01 0.01 0.008 0.01 0.2 0.03 0.6 0.03 0.04

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8. The second
row displays the RMSE values of the input parameters for 𝑡 > 8 after a continuous
perturbation has been applied to 𝐸𝑚𝑖𝑛 and 𝑅𝑠.

Table 8
𝜏𝑒𝑠 , 𝜏𝑒𝑝 & 𝐸𝑚𝑖𝑛 RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 0.006 0.008 0.006 0.003 0.2 0.01 2 0.04 0.04
RMSE 𝑡 > 8 0.1 0.4 0.02 0.005 0.02 0.02 3 0.04 0.04

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8. The second
row displays the RMSE values of the input parameters for 𝑡 > 8 after a continuous
perturbation has been applied to 𝐸𝑚𝑖𝑛 and then a discrete perturbation to the timing
arameters 𝜏𝑒𝑠 and 𝜏𝑒𝑝.

the perturbation with the same value of the RMSE being found before
and after the perturbation has been applied. All over input parameters
suffer from increases to their RMSE value with the exception of the
systemic resistance which has a 10× improvement. 𝐶𝑠𝑣 exhibits the
largest RMSE value.

3.2.6. 𝐶𝑠𝑣
In this section we perturb the venous compliance parameter 𝐶𝑠𝑣. In

ig. 11, we see the parameter estimate diverges from the truth value
hist all other parameter estimates in Fig. 11 appear to converge as
ccurately as in the base state, this is mirrored by constant steady
ariance. The RMSE values found in Table 9 reflect the accuracy of
stimation observed in the base state case, see Table 3. In this case
e obtain our smallest value of the RMSE obtained by 𝜏𝑒𝑝 after the
erturbation was applied to 𝐶𝑠𝑣. Table Fig. 11 displays the unanimous
rend that as the simulation runs longer the estimation improves,
eeming to indicate the perturbation applied to 𝐶 makes no difference
10

𝑠𝑣
Table 9
𝐶𝑠𝑣 RMSE.

Parameter 𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛
RMSE 𝑡 ≤ 8 0.004 0.008 0.007 0.003 0.09 0.02 2 0.03 0.002
RMSE 𝑡 > 8 0.001 0.0004 0.006 0.0007 0.06 0.003 3 0.008 0.001

The first row shows the RMSE values of input parameters for 𝑡 ≤ 8. The second
row displays the RMSE values of the input parameters for 𝑡 > 8 after a continuous
perturbation has been applied to 𝐶𝑠𝑣.

to the estimation of the other input parameters. 𝐶𝑠𝑣 appears to take no
otice of the perturbation and continues to diverge.

. Discussion

The main investigation of this work was to test the robustness of
he UKF in the presence of beat-to-beat variability and physiological
arameter perturbations. Overall, we see that the UKF presents itself
s a good choice for the identification of input parameters, in terms of
ccuracy and efficiency. The results in Section 3 demonstrate that all
he input parameters exhibit adaptive behaviour, towards their ‘‘true’’
alues in the presence of perturbed and non-perturbed input parameters
note: both situations contain synthetic personalised varying cardiac
ycle length times). Most remarkably, we see that when certain input
arameters are perturbed, namely, the minimal ventricular elastance
𝑚𝑖𝑛 and the ventricle timing parameters 𝜏𝑒𝑠 and 𝜏𝑒𝑝, the UKF often

finds the perturbed values exceptionally well (see Figs. 7 and 6). This
provides assurance that, given a similar data set measured in clinic,
these parameters are likely to be very accurately estimated, given the
same set of clinical measurements are used, given a different set of
measurements it is likely the accuracy of the estimations may change
for specific input parameters. Other input parameters such as the
systemic compliance, 𝐶𝑠𝑎 and the systemic resistance 𝑅𝑠 do not show as
accurate estimations (see Figs. 8 and 9). Despite this, one can observe
that the general trend of the added perturbation is still present in the
estimation of the input parameters.

All cases explored in this work reveal that when a perturbation
is applied to a parameter, this normally introduces some disturbance
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Fig. 10. 𝜏𝑒𝑠 , 𝜏𝑒𝑝 & 𝐸𝑚𝑖𝑛 - Figures A–I show parameter estimations over 15 cardiac cycles with perturbed timing parameters 𝜏𝑒𝑠 and 𝜏𝑒𝑝 and 𝐸𝑚𝑖𝑛. The yellow and blue line represent
the true and estimated parameter values respectively. The blue dots represent the perturbed values of the timing parameters 𝜏𝑒𝑠 and 𝜏𝑒𝑝. The green line represents the continuous
parameter perturbation. Figures J–R display the parameter covariances over the 15 cardiac cycles.
Fig. 11. 𝐶𝑠𝑣 - Figures A–I display the parameter estimations over the 15 cardiac cycles with perturbed 𝐸𝑚𝑖𝑛. The yellow and blue line represent the true and estimated parameter
values respectively. The green line represents the perturbed value of 𝐶𝑠𝑣. Figures J–R display the parameter covariances over the 15 cardiac cycles.
to the other parameter estimations in the model (see the Figures in
Section 3) where the disturbance of other parameters in magnitude is
often smaller than the magnitude of the perturbed parameter. Further,
the disturbance introduced on certain input parameter estimates is
a residual effect of another parameter perturbation and not a direct
change in a patient’s physiological state. The non-perturbed parameter
estimations tend towards their true values during a cardiac cycle after
a perturbation has been applied. This is evident in the RMSE values,
in Section 3. Clinical expertise is essential to ensure that this minimal
11
disturbance can be distilled from true parameter perturbations, for
example, in a head-up tilt, one observes a significant drop in systemic
resistance before recovery [30]. In Fig. 10, we perturb 3 input pa-
rameters and observe the estimations on the timing parameters break
down dramatically while the other input parameters appear to be
estimated with sufficient accuracy. This is likely to be caused by the
3 parameters being linked by the analytical description of the ventricle
in Eq. (6), which highlights the need to identify dependencies and
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identifiable parameters before estimation to ensure that accurate and
unique parameter estimations can occur.

We examined the continuous sensitivity of input parameters to give
an indication on how this may relate to the accuracy of estimation
performed by the UKF. The continuous sensitivity analysis (CSA), with
results shown in Fig. 5, reveals that most input parameters have a well-
defined cycle of importance which correspond to the phases of the
cardiac cycle. Two conclusions can be drawn: first, this may explain
why most input parameters are estimated with outstanding accuracy,
even when their time averaged influence is minimal compared to the
most influential parameter 𝜏𝑒𝑠. Therefore, the accurate estimation of
nput parameters is due to either a well-defined cycle of importance or
eing consistently important. This means the input parameters’ effects
re observable in the outputs, such that they would be accurately iden-
ified by the UKF. The second conclusion from the CSA is what choice
f measurements should be made. Often it is the norm to investigate
iscrete measurements as discussed in Section 2.4. The CSA indicates
hat there are distinct moments within the cardiac cycle where certain
arameters exert a stronger influence compared to at other moments.
ur work provides a guide for what one should consider when deciding
n which measurements to use to interrogate an input parameter space,
.e., one would choose measurements which are applicable to the time
oints where all input parameter effects are at their largest and hence
mproving the chances of making the parameters identifiable.

Notably, two input parameters exhibit potentially surprising results.
n the CSA (Fig. 5), we note that the end pulse time, 𝜏𝑒𝑝, exhibits

minimal sensitivity across the whole time period investigated. Due to
personalised cardiac cycles being included, the effects of end pulse time
are truncated. The end pulse time signifies the start of passive filling
of the ventricle and due to the passive filling phase of ventricle being
cut off from cycle to cycle, this leads to the effects being neglected.
Despite the lack of sensitivity, 𝜏𝑒𝑝 is found accurately in nearly all cases
investigated. One explanation is that the variance of the parameter is
consistently low, hence the UKF finds the local minimum estimate and
therefore the accurate estimate. Due to this factor, the estimate of 𝜏𝑒𝑝
should be considered with more caution than other input parameters.

Within the clinical setting, the end systolic time, 𝜏𝑒𝑠 is one which is
considered to have more impact, as it relates to a QT interval [58,59],
which is reflected in the high level of sensitivity seen in Fig. 5. In
Section 3, we notice that the estimates of the venous compliance 𝐶𝑠𝑣
appear to diverge in all cases, despite the well defined CSA curve in
Fig. A.12. 𝐶𝑠𝑣 even diverges in the base state where no parameter
perturbations have been applied (see Fig. 4). The variance of the venous
compliance is the highest in all parameter estimations, where as the
parameters with accurate estimations have steady minimal variances.
One explanation for this is that the venous compliance has no direct
influence over any of the measurements present in our analysis [60].
As a consequence the parameters effects cannot be observed indepen-
dently in the synthetic measurements and subsequently the parameter
estimate is poor. Despite these special cases, the CSA and UKF results
are robust and consistent to all other input parameters.

In the presence of personalised cardiac cycle lengths and parameter
perturbations, the average computation time is 90.4 s when executed
serially, which corresponds to an average of 6 s per cardiac cycle. If the
goal is to implement this approach clinically, it is crucial to reduce the
computation time to real-time levels, ensuring a one-to-one relationship
between the computational time and the cardiac cycle time. Recent
work has shown that a real time implementation without perturbations
is available to clinicians [60]. Although the estimations presented in
this study demonstrate exceptional accuracy, it is possible to decrease
the computational time by reducing the tolerance, complexity of the
differential equation solver, and the size of the time step. However, this
would inevitably lead to a decrease in the accuracy of the parameter
12

estimate. Currently, there is no existing adaptive time step Kalman
filtration approach for this purpose, but its development would signif-
icantly enhance the efficiency of the algorithm. Additionally, it would
be intriguing to investigate the optimal time step required to ensure
sufficient accuracy of the parameter estimate. If either of these points
could be developed, it would lead to an increase in the algorithm’s
efficiency while still maintaining the accuracy level presented within
this work.

It is worth noting that the computational expense of this approach
is low compared with other computational tools for direct clinical
applications [26,61–63]. Even though the computational time of this
work does not currently meet real-time requirements, clinicians can still
obtain quick insights into a patient’s physiological state compared to
other tools. Therefore, when pathophysiological conditions are present
within the patient data, the UKF should be capable of providing state
and parameter estimates that accurately emulate the pathophysiolog-
ical conditions depicted in the data. The only drawback with this
current workflow is that the personalised cardiac cycle lengths must
be recorded through an ECG. However, when the pathophysiological
condition is not severe, this workflow of collecting personalised cardiac
lengths and patient data, feeding them to the UKF, and subsequently
interpreting the results to draw medically relevant conclusions, remains
an efficient approach to personalised patient-centred care.

One of the primary perturbations employed in this study involves
the random scattering of the timing parameters of the elastance func-
tion, specifically 𝜏𝑒𝑠 and 𝜏𝑒𝑝, as defined in Eq. (14). In reality, there
exists an unknown function that defines a complex relationship be-
tween the length of the cardiac cycle 𝜏, the end systolic time 𝜏𝑒𝑠, and the
end pulse time 𝜏𝑒𝑝. However, in this work, these parameters are treated
as independent parameters of the elastance function. By perturbing
𝜏𝑒𝑠 and 𝜏𝑒𝑝 independently, we are able to demonstrate the robustness
associated with the UKF in accurately estimating the timing parameters,
even under extreme and unphysiological conditions. hence defining a
worst case scenario. This highlights the excellent capability of the UKF
to handle perturbations and effectively estimate the timing parameters,
despite their independence from the underlying physiological relation-
ships within the cardiac cycle. The other parameter perturbation used
(defined in Eq. (15)) applies a steady increase to a parameter value. The
results are also tested using a steady decrease in the parameter value
and the same conclusions are held. This parameter perturbation is more
realistic and similar parameter dynamics have been seen in models
which have built-in physics which causes time-varying behaviour of
input parameters, such as in models of head-up tilt, microgravity and
stochastic versions of the Windkessel model [64–66].

The UKF utilised to estimate input parameters can only do this
within a local context. While the UKF excels in providing efficient
parameter estimations, there are advanced global optimisation tech-
niques, such as particle filters and genetic algorithms which offer
additional benefits such as independence from initial conditions which
the UKF can be sensitive to and they are better suited at coping
with non-linearity’s in the system meaning the global optimisation
techniques can often explore a wider input parameter space [67,68].
The employment of carefully chosen sigma vectors to accurately rep-
resent a GRV reduces the need for numerical derivative evaluations,
which are computationally expensive in global optimisations. UKF’s
computational advantage is particularly valuable in clinical situations
where a decision may present with a time critical aspect. However,
relying solely on the UKF’s local approach has certain limitations. Since
the UKF heavily relies on initial conditions and model assumptions,
there is a potential for introducing bias into the estimates.

Within this work, all parameter distributions and initial co-variances
were chosen to represent the physiology of the input parameters, as
defined in Section 2.5. The dynamical system noise in this work was
set to 𝑄 = 10−8 due to the cardiovascular system’s largely deterministic
nature and to avoid sigma point collapse, a problem associated with

the UKF [26,55]. The measurement noise used in this work was 𝑅 =
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Fig. A.12. Continuous Sensitivity Analysis - Figures A–C display the continuous sensitivity with respect to the three measurements investigated in this work. Figure D displays
continuous sensitivity of 𝑍𝑎𝑜 and 𝐶𝑠𝑎.
52 ×𝐼3×3 to represent the uncertainty within our chosen measurements,
as defined in Section 2.3. The local nature of the UKF restricts its ability
to explore the entire parameter space, limiting its capability to find
the global optimum. In contrast, global optimisation techniques can
better navigate multimodal parameter spaces, potentially yielding more
accurate estimates.

In the context of cardiovascular clinical decisions, the presence of
a subject expert would offer valuable insight. The estimates provided
by the UKF can be evaluated by the clinical expert, who possesses
specialised knowledge to determine if the estimated parameters align
with physiological expectations and accurately represent the patient’s
physiological state. This evaluation process ensures that the estimates
are not only mathematically sound but also relevant from a clinical
perspective. By incorporating the expertise of clinical professionals,
the UKF’s estimates can be validated, enhancing the interpretation of
clinical data and providing a more comprehensive assessment of the
patient’s condition. This collaborative approach between the UKF and
the clinical expert fosters an efficient, reliable and clinically relevant
decision-making process.

5. Conclusion

We have conducted an analysis of a tractable nine-dimensional
single ventricle lumped parameter model, representing the systemic
circulation. The lumped parameter approach used in this model is
representative of a range of dynamical systems and our observations
are in principle applicable to any model — not just a cardiovascular
setting. We have developed a novel computational algorithm, designed
to incorporate patient-specific beat-to-beat variability into model inves-
tigations. Utilising this algorithm, we have efficiently implemented the
Unscented Kalman Filter, demonstrating its exceptional adaptability to
severe parameter perturbations, representing significant changes in a
patient’s physiological state.
13
Our investigation into the computationally efficient, continuous
sensitivity of model input parameters has led to a novel explanation
for the exceptional capability of the UKF to accurately estimate input
parameter values within a single cardiac cycle. This significant insight
contributes to our understanding of the UKF’s robustness and efficacy.
Our research showcases potential clinical applications of the UKF. By
utilising patient-specific measurements and employing the close to real-
time UKF, it becomes feasible to monitor a patient’s physiological state
with minimal delay. This novel tool enables medical professionals to
promptly identify the onset of a (patho)physiological condition, thus re-
ducing the necessity for invasive procedures and ultimately improving
patient care.

Our study contributes to the field of computational science by
presenting a representative cardiovascular model, developing an in-
novative algorithm, elucidating the UKF’s remarkable estimation ca-
pabilities, and highlighting its potential clinical applications. This re-
search potentially has far-reaching implications for personalised patient
monitoring and can lead to substantial improvements in medical care.
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