Accurate nuclei segmentation in breast cancer tumour biopsies

SHENFIELD, Alex, KASTURI, Surya and TRAN, William (2022). Accurate nuclei segmentation in breast cancer tumour biopsies. In: 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE. [Book Section]

Documents
30487:606382
[thumbnail of IEEE_CIBCB_2022_Final_Submission.pdf]
Preview
PDF
IEEE_CIBCB_2022_Final_Submission.pdf - Accepted Version
Available under License All rights reserved.

Download (4MB) | Preview
Abstract
Breast cancer identification is a arduous process and diagnosing it using Haematoxylin and Eosin (H&E) stained pathology images is a significant challenge, with pathologists struggling to segment cancer nuclei accurately. This study will evaluate the efficacy of different methods utilising deep learning techniques for breast cancer nuclei segmentation, with a particular emphasis on U-Net architectures. The proposed methodology is divided into four stages: image enhancement, individual nuclei segmentation, feature extraction, and whole image binary segmentation. This work then conducts a rigorous comparison of different segmentation techniques.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item