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Abstract—Breast cancer identification is a arduous process
and diagnosing it using Haematoxylin and Eosin (H&E) stained
pathology images is a significant challenge, with pathologists
struggling to segment cancer nuclei accurately. This study
will evaluate the efficacy of different methods utilising deep
learning techniques for breast cancer nuclei segmentation, with
a particular emphasis on U-Net architectures. The proposed
methodology is divided into four stages: image enhancement,
individual nuclei segmentation, feature extraction, and whole
image binary segmentation. This work then conducts a rigorous
comparison of different segmentation techniques.

Index Terms—U-Net, Histopathology Images, Breast Cancer,
ResNet, ResNext, DenseNet

I. INTRODUCTION

Breast cancer is one of the leading causes of death among
women. Globally in 2015, around 2.4 million women had
breast cancer treatment, and 0.5 million died due to the disease
[7]. Breast cancer screening comprises one or two radiologists
examining scans for pre-symptomatic cancer symptoms with
the goal of minimising sickness and death. Additionally, such
screening has negative ramifications including over-diagnosis
and over-treatment of tumours that would not have manifested
throughout the woman’s lifespan if she had not been properly
examined. There is a dispute on the extent of over-diagnosis,
ranging from 1% to 54% of cancers found with screening and
the balance of benefits and risks associated with screening
[36]. While detecting low grade ductal invasive cancer raises
the risk of over-diagnosis [32], detecting grade 3 cancer results
in fewer deaths [30]. Between 0.6% and 0.8% of women are
diagnosed with cancer as a result of routine screening [3].
Additionally, breast screening programmes miss between 15%
and 35% of cancers due to human error or because the tumour
is not visible or detectable to the screening radiologist [13].
Studies suggest that the screening of mammography using
AI has improved over the years, and AI systems have been
shown to exhibit better performance while also reducing the
effort of the second reader by 88% [24]. This comprehensive
examination of the artificial intelligence system sets the path
for clinical studies to improve the performance and reliability
of cancer prediction.
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II. LITERATURE SURVEY

In recent years, researchers have developed a number of
useful and efficient deep learning methods. The majority of
deep learning approaches are capable of automatically extract-
ing features and optimising models to ensure robustness and
high performance. Different deep learning models have been
adopted to do tasks like segmentation, classification and cluster
analysis. One such example for image analysis is Convolution
Neural Networks (CNNs), which were originally proposed in
1980 [23], but have undergone significant improvements in
recent years [12], [20], [27]. However, much of the focus of
research in this area has been on image classification and it
is unclear how much of this crosses over to the problem of
biomedical image segmentation. A further drawback is the
large number of images typically required to train a CNN
effectively [10]. To deal with these challenges, in 2015, a team
from the University of Freiburg in Germany, proposed a new
CNN and encoder-decoder based architecture named U-Net,
which plays a significant role in segmentation for biomedical
images [26]. Due to the simplicity of the U-Net construction, it
can easily be trained with a small number of images, allowing
researchers to embed multiple encoders for improved results.
For instance, a recent study showed that using an improved
version of MobileNet as a backbone encoder for U-Net can
provide good results to segment nuclei in the Triple-Negative
Breast Cancer (TNBC) histopathology image dataset. This
approach achieved 97% accuracy, a 98% Area Under the Curve
(AUC), and a 59% Jaccard Similarity Coefficient [18].

Since the inception of U-Net there have been numerous
adaptations and alterations to the architecture, with many
different encoders used in published research papers; how-
ever, the backbone encoders for U-Net that stand out the
most are VGG [27], ResNet [12], ResNext [33], DenseNet
[15], MobileNet [14], and EfficientNet [31]. In particular,
the ResNet architecture [12] has shown great promise for
various image segmentation tasks in bio-medical applications
and has been widely used [6], [37]. Several studies show that
results can be improved both with a pre-trained encoder as a
backbone architecture for nuclei segmentation and by using
a multi-organ transfer learning approach for segmentation to
make the model robust [5], [17]. In particular, using a pre-
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trained backbone based on the EfficientNet architecture with
a multi-organ transfer learning approach achieved a recall
score of 0.9272 and F1 score of 0.8008, outperforming many
other techniques [5]. Simply combining pre-processing of the
dataset with post-processing of results from a model can
also significantly improve accuracy even with basic a U-Net,
allowing it to outperform some of the advanced models with
pre-trained encoders. For example, using stain normalisation
on whole-slide images in histopathology helps the researchers
to build a better model [2]; whilst a 2020 study showed
that a basic U-Net trained on a H&E dataset utilizing pre-
processing techniques (such as data augmentation) and further
post-processing of the results with the watershed algorithm
helps to achieve a Dice score of 0.84 [4]. Although the
majority of prior research demonstrated good accuracy, there
is still an opportunity for performance enhancement, and the
majority of these techniques use post-processing techniques
to improve results. Additionally, integrating different encoders
with the basic U-Net architecture can provide better results in
nuclei image segmentation tasks [22].

This research will design a deep learning model for nuclei
segmentation by employing a variety of methodologies from
the literature including:

• applying pre-processing techniques on openly available
datasets

• using a multi-organ transfer learning method for segmen-
tation

• modifying the basic U-Net architecture to employ Batch-
Norm [16]

• comparing the performance of different encoders with and
without pre-training

All the models will be trained using a combination of the
TNBC and MoNuSeg datasets but will be evaluated using a
held-out subset of the TNBC dataset for testing.

III. METHODOLOGY

Recent developments in convolutional neural networks, par-
ticularly with respect to their optimisation, have elevated them
to the state-of-the-art in object recognition and classification
problems. The research discussed in this manuscript will eval-
uate a range of sophisticated state-of-the-art encoder-decoder
based architectural U-Net models to segment nuclei in breast
cancer H&E images. There are four essential steps to apply
deep learning to breast cancer nuclei segmentation:

1) Data preparation - including resizing images from the
dataset and augmenting existing datasets with new data.

2) Training the candidate models - in this study we used
a mixture of the MoNuSeg dataset and a subset of the
TNBC dataset.

3) Using the trained models to predict nuclei segmentation
masks on the test set - in this case we used a held-out
subset of the TNBC dataset.

4) Evaluating the results using a range of performance met-
rics to determine the best performing model architecture.

TABLE I: Candidate model architectures

Model Pre-trained
Modified U-Net ImageNet

ResNet50 Encoder ImageNet
ResNet101 Encoder ImageNet

ResNext50-32 4d Encoder ImageNet
ResNext101-32 8d Encoder ImageNet

Dense-Net 121 Encoder ImageNet
Dense-Net 201 Encoder ImageNet

Basic U-Net No
ResNet50 Encoder No
ResNet101 Encoder No

ResNext50-32 4d Encoder No
ResNext101-32 8d Encoder No

Dense-Net 121 Encoder No
Dense-Net 201 Encoder No

This study focuses on distinguishing tumour nuclei from
normal tissue in Whole Slide Images (WSIs) by using U-
Net-based segmentation techniques with a variety of encoder
models and different pre-training strategies. Table I provides
a full list of the candidate model architectures.

A. Dataset and Pre-Processing

The current study uses images from the Triple-Negative
Breast Cancer dataset (TNBC) made available by the Interna-
tional Cancer Genome Consortium (ICGC) [25] and the Multi-
Organ Cancer dataset (known as MoNuSeg) published by The
Cancer Genome Atlas (TCGA) [21].

The TNBC dataset consists of 50 H&E stained breast
pathology images at 40x magnification and their corresponding
masks (i.e. the annotated cell nuclei) with a resolution of 512
x 512 pixels each. In this dataset there are a total of 4022
annotated cell nuclei (with an average of 80 cell nuclei per
sample). The MoNuSeg dataset consists of 30 images with
corresponding masks. Unlike the TNBC dataset, MoNuSeg
images and masks are at a higher resolution of 1024 x 1024
pixels. Again, images are captured with 40X magnification.
The MoNuSeg collection contains 22,000 nuclear border an-
notated images; however, these cover a range of different
organ types, unlike the TNBC dataset which is solely focused
on breast tissue. An example H&E stained digital pathology
image and corresponding mask (i.e. cell nuclei annotations) is
shown in Fig.1.

In this study, the training set comprises of all 30 images
from the MoNuSeg training dataset and 50% of the TNBC
images (i.e. 25 images). In the data pre-processing step all
the images were converted using down-sampling into 512 x
512 image resolutions, and then a data augmentation process
(changing image orientation) was applied to increase the size
of the dataset. Algorithm 1 represents the data augmentation
process for both images and masks in the training dataset only.
After data augmentation and pre-processing, the training set
contains 165 images and corresponding masks with a total of
26,022 annotated nuclei.

B. Model Architecture

The research described in this paper employs U-Net model
architecture with different backbone encoders to improve the



(a) Digitized Whole Slide Image (b) Nuclei Mask Annotation

Fig. 1: A sample H&E stained image and corresponding nuclei mask

Algorithm 1 Data Augmentation algorithm
Input: Dataset, D, consisting of N image and mask pairs (I,M)
with a mix of 512 x 512 and 1024 x 1024 resolutions.
Output: Augmented Dataset, D aug, containing 3 x N image
and mask pairs at 512 x 512 pixel resolution.
Algorithm:
for each image and mask pair, (I,M) = 1 to N do

1) (I,M)1 = FlipH(I,M)
2) (I,M)2 = FlipV (I,M)
3) (I,M)3 = Rotate45(I,M)
4) (I,M)aug = (I,M)1, (I,M)2, (I,M)3

for each image and mask pair, (I,M) aug do
a) Down-sample image and mask to 512 x 512 reso-

lution
b) Write images into the new path D aug

accuracy of the segmentation of nuclei in breast histopathology
WSIs. Table I provides an overview of the different encoders
used in this study.

U-Net: The U-Net model [26] is a kind of autoencoder that
is exceptionally good at semantic segmentation. It was specifi-
cally designed for biomedical image segmentation, though has
subsequently been used for a range of semantic segmentation
tasks. As can be seen from Fig.2, it is a U-shaped model with
two paths comprising a contracting or downsampling path (on
the left side) and an expansive or upsampling path (on the right
side). The contracting path is really a simple convolutional
network consisting of blocks of two 3x3 unpadded convolu-
tions that are repeatedly applied, each followed by a rectified
linear unit (ReLU) and a 2x2 max pooling operation with
stride 2 for downsampling. This architecture has double the
amount of feature channels at each downsampling step. After
each stage of the downsampling process, context information
about the image is gathered and transmitted toward the path
of the upsampling process. Every step in the expansive path
begins with an upsampling of the feature map, followed by
a 2x2 convolution (“up-convolution”) that halves the number

of feature channels. Cropping between the downsampling
and upsampling stages is required because of the loss of
boundary pixels in each convolution. A concatenation will
be applied with the corresponding cropped feature map from
the contracting path and two 3x3 convolutions, followed by a
ReLU. Finally, a 1x1 convolution is employed at the final layer
to convert each 64-component feature vector to the appropriate
number of classes [26].

Fig. 2: U-Net Architecture [26]

In the current research work, a modified version of the U-
Net model was introduced incorporating batch normalisation
between each convolutional block (see Fig.3). A recent study
shows that implementing batch normalisation improves the
training process [8]. So, after each 3x3 convolution block,
batch normalisation is introduced with the rest of the network
following the same structure as U-Net.

Encoders:
1) ResNet: It is well known that deep convolutional neural

networks are great at identifying low-level, mid-level, and
high-level features from images, and stacking more layers
generally gives us better accuracy but it raises the problem
of exploding gradients [9]. Originally these problems were



Fig. 3: Modified U-Net Architecture

addressed through normalised initialisation and intermediate
initialisation, which enable networks with more layers to con-
verge. However, it has been shown that when deep networks
start to converge accuracy gets saturated and then degrades
[11]. This issue was addressed by taking the layers from the
deeper model and adding identity layers to it [12] (Fig.4 shows
an example residual block using these identity connections).
The resulting deep model should then not generate a more
significant training error than its counterpart, since the extra
layers were merely the identity layers. Using a deep residual
learning framework, a significant improvement on the bench-
mark ImageNet challenge was achieved [12].

Fig. 4: A residual learning building block [12]

2) ResNext: As the number of hyper-parameters rises, so
does the complexity and difficulty of developing architectures,
which is particularly the case when there are several neural
network layers involved. The VGG-nets [27] use a simple
yet effective strategy based on stacking blocks of the same
shape in order to construct intense networks. ResNets [12] use
the same technique, stacking modules with the same structure
on top of one another. This fundamental rule causes hyper-
parameter possibilities to become progressively limited and
the relevance of depth in neural networks to become more
apparent. Because of its simplicity, this strategy may also
reduce the likelihood of over-adapting the hyper-parameters
to a given dataset in the future.

Unlike VGG-net, the Inception family of models [16]
used Split-Transform-Merge topologies that are capable of
achieving high accuracy with little theoretical complexity [29].
Using split-transform-merge techniques, Inception modules
are predicted to be able to match the representational capability
of densely packed layers but at a far lower computational
power. However, various characteristics and hyper-parameters
must be considered when adapting Inception architectures for

new datasets and tasks, and this may be challenging. There
have been several issues with implementing Inception models,
including the fact that each transformation has its own set
of filter numbers and widths. Despite this, careful pairings
of these components provide outstanding neural network de-
signs [33]. Similarly to VGG and ResNets, ResNext uses a
repeating layers strategy while exploiting the split-transform-
merge mechanism in an easy, extensible way. A module in the
ResNext network performs a set of transformations, each on a
low-dimensional embedding, whose outputs are aggregated by
summation. The transformations to be aggregated are all of the
identical topologies (see Fig.5). Because of this architecture, a
large number of transformations may be implemented without
a specific design.

Fig. 5: Left: ResNet block; Right: ResNext block with cardi-
nality = 32 [33]

3) DenseNet: Convolutional Neural Networks are now the
dominant model for computer vision tasks. Although CNNs
were initially developed two decades ago, recent improve-
ments and iterations make the neural networks deeper, and
even exceed 100 layers (e.g. ResNet, Highway Networks). Due
to the more extensive networks, the information about the input
can vanish and wash out by the time it reaches the end. Many
new publications addressed these problems, including models
such as ResNets [12] and Highway Networks [28] that pass
signals from one layer to another via identity layer. Despite
the diverse network topologies and training procedures, these
methods provide short routes from the previous layers to the
following layers.

DenseNet is a novel design that employs a straightforward
connection pattern: to enable maximum information flow
between network levels all DenseNet layers are physically
connected with matching feature-map sizes (see Fig.6). To
maintain the feed-forward nature, each layer receives new
inputs from previous levels and transmits its own feature maps
to succeeding layers. Unlike ResNets, DenseNet layers never
combine features using summation before passing them into
the next layer; instead, they combine features via concatena-
tion.

IV. IMPLEMENTATION

A. Training

All the networks described in Table I were designed and
developed using the Pytorch framework with the help of the



Fig. 6: A 5 layer dense block with growth rate k = 4 [15]

Segmentation Models package [34] for various encoders. The
training of the models was done on an Ubuntu 21.04 LTS
Linux system with 12GB of GPU (nVidia GeForce RTX
3060), Ryzen 7 processor, and 32GB of RAM. The training
and testing dataset images were pre-processed to increase the
dataset size and convert them to a standard set of dimensions
(as described in Section III-A). The data augmentation strategy
used changes the orientation of the images to increase the
number of samples. The current research didn’t use any
other data augmentation techniques so as to prevent image
distortion.

Initially, we trained each model architecture on the training
dataset and evaluated each epoch of the model on the vali-
dation set. The hyperparameters for training the model are a
learning rate of 1e-4 and a batch size of 3 images (due to GPU
memory limitations). Each model was trained for 20 epochs
using the Adam optimiser [19] to adjust the network weights
and a combination of Dice Loss and the Binary Cross-Entropy
loss function to check the loss of the network while training
(see Equation 1).

Our loss function = BCE loss+ Dice loss (1)

BCE loss(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ) (2)

Dice loss(y, ŷ) = 1− 2(y ∗ ŷ) + 1

y + ŷ + 1
(3)

where, y is the ground truth pixel class and ŷ is the pixel
class predicted by the model.

Note in the Dice loss equation (Equation 3), one is added in
both the numerator and denominator to ensure that the function
is not undefined in edge case scenarios such as when y = ŷ =
0.

B. Evaluation

Models are split for training purposes into two types - those
with no pre-trained weights and those with pre-trained weights.
Except for the modified U-Net, the ImageNet weights were

TABLE II: Final training and validation losses for all the
models after 20 epochs

Encoder Final Train Loss Final Valid Loss
Modified U-Net 0.448 0.486

ResNet-50 0.465 0.604
ResNet-101 0.493 0.622

ResNext-50-32 4d 0.480 0.604
ResNext-101-32 8d 0.472 0.629

DenseNet-121 0.450 0.537
DenseNet-201 0.453 0.590

Pre-trained ResNet-50 0.322 0.436
Pre-trained ResNet-101 0.337 0.455

Pre-trained ResNext-50-32 4d 0.338 0.436
Pre-trained ResNext-101-32 8d 0.317 0.441

Pre-trained DenseNet-121 0.359 0.431
Pre-trained DenseNet-201 0.349 0.433

utilised as initial weights in the second set of models. To
validate the results of the trained model, this study uses a
test dataset containing a subset of the TNBC dataset all with
dimensions of 512 x 512 pixels.

Fig. 7: Model training loss per epoch

Fig.7 illustrates the training loss of all the models over
time. The results presented are the median of 10 runs of the
training process (however, the performance of the models was
extremely consistent - with a maximum of 2% difference in the
validation loss between different runs). Table II shows that the
model with the best training loss is the U-Net with pre-trained
ResNext 101 encoder, but the model with the best validation
loss is the U-Net with the pre-trained DenseNet 121 encoder.
Also worth noting is that fully training complex encoders from
scratch requires more data and more epochs (as can be seen
in the difference in training and test performance between the
basic modified U-Net and the U-Nets using more complex
backbones). Fig.7 and Fig.8 show that after 20 epochs models
with a pre-trained encoder have almost converged, whereas the
non-pre-trained encoder models are still improving.



Fig. 8: Model validation loss per epoch

V. RESULTS AND DISCUSSION

The model performance was evaluated using a range of met-
rics including the Jaccard Index (also known as Intersection
over Union - a measure of segmentation performance), F1
score, Precision, and Recall. Table III shows that the majority
of pre-trained encoder-based models outperformed the non-
pre-trained encoders. The pre-trained DenseNet-121 model
delivers the best Jaccard Index of 0.669, the highest F1 score
of 0.800, and the highest accuracy of 0.939; however, the
modified U-Net model provides a superior Recall score and
runs significantly faster than other models. Additionally, the
pre-trained ResNet-50 model provides greater Precision than
the other models.

Fig.9 shows and example of how the modified U-Net
performs in the segmentation process for a sample image from
the test dataset. Detailed observation shows that the model
struggles to separate overlapping nuclei (shown as red boxes
in Fig.9). Fig.10 and Fig.11 show the performance of pre-
trained ResNet-50 and the pre-trained DenseNet-121 on the
segmentation task using the sample sample image. You can
see from these figures that even the most sophisticated models
have difficulties in distinguishing between overlapping nuclei
(again, highlighted by red boxes in Fig.10 and Fig.11). The
key reason for DenseNet-121’s superior performance is due to
its architectural characteristics, which include features passing
through to all of the layers allowing the model to deliver
better-segmented results than other models. In addition, as
compared to other models, the DenseNet-121 model is a bit
slower due to extra computational load introduced by this
methodology. The modified U-Net model is the quickest of
the models presented because of its straightforward design,
which allows it to process 129 images per second. On the basis
of Fig.8, we can also conclude that the pre-trained models
converged more quickly than the non-pre-trained models.
Despite the performance differences generated by the different

models shown in Table III, all of the models had issues with
the segmentation of overlapping nuclei. In order to make
more enhancements and developments to the same project,
we may use post-processing approaches (such as watershed
transformations) to reduce the noise and improve some of the
overlapping issues that have been identified.

VI. CONCLUSION

This research study demonstrates the utility of the trans-
fer learning strategy in the segmentation of cell nuclei in
Triple-Negative Breast Cancer patients. The encoders ResNet,
ResNext, and DenseNet were chosen to be used in the
research, which was conducted on various datasets. These
experiments demonstrate that pre-trained models could be
trained more quickly and subsequently surpass non-pre-trained
models in terms of performance. When comparing pre-trained
models to non-pre-trained models, the pre-trained models
achieve better outcomes in terms of Precision, Recall, and
F1 score. Results show that Deep Learning models trained on
various organ cell images may yield excellent performance for
breast cancer tumour cells on nuclei segmentation tasks even
when trained on different organ cell images. When compared
to the most modern encoder-based models, the improved U-
Net produces similar results while being much quicker both
to train and to use in prediction.

A key limitation of this study is the small number of
unique WSIs used in training and testing the segmentation
algorithms. Additional training data would allow us to increase
the accuracy of all the networks tested in this work, as well
as improving model generalisation and reducing overfitting.
Recently, researchers adopted two key techniques to enhance
the datasets: scalable crowdsourcing of the annotation process
[1], and creating additional annotated images using Generative
Adversarial Networks (GANs) [35]. The outcomes of the
existing models can potentially be improved in the future using
these two methodologies.
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