Controlling density and modulus in auxetic foam fabrications—-implications for impact and indentation testing

DUNCAN, Oliver, ALLEN, Tom, FOSTER, Leon, GATT, Ruben, GRIMA, Joseph N. and ALDERSON, Andrew (2018). Controlling density and modulus in auxetic foam fabrications—-implications for impact and indentation testing. Proceedings, 2 (6), p. 250. [Article]

Documents
18992:410591
[thumbnail of Duncan-ControllingDensityAndModulus(VoR).pdf]
Preview
PDF
Duncan-ControllingDensityAndModulus(VoR).pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
Abstract
Foams are commonly used for cushioning in protective sporting equipment. Volumetrically compressing open-cell polyurethane foam buckles cell ribs creating a re-entrant structure—set by heating then cooling—which can impart auxetic behaviour. Theoretically, auxetic materials improve impact protection by increasing indentation resistance and energy absorption, potentially reducing sporting injuries and burdens on individuals, health services and national economies. In previous work, auxetic foam exhibited ~3 to ~8 times lower peak force (compared to its conventional counterpart) under impacts adopted from tests used to certify protective sporting equipment. Increases to the foam’s density and changes to stress/strain relationships (from fabrication) mean Poisson’s ratio’s contribution to reduced peak forces under impact is unclear. This work presents a simple fabrication method for foam samples with comparable density and linear stress/strain relationship, but different Poisson’s ratios ranging between 0.1 and −0.3, an important step in assessing the Poisson’s ratio’s contribution to impact force attenuation.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item