LENZO, Basilio (2017). Gravity balancing of a spatial serial 4-dof arm without auxiliary links using minimum number of springs. In: XXIII Conference - The Italian Association of Theoretical and Applied Mechanics, Salerno, Italy, 4-7 September 2017. [Conference or Workshop Item]
Documents
16806:247533
PDF
Lenzo_aimeta2017_rev.pdf - Accepted Version
Available under License All rights reserved.
Lenzo_aimeta2017_rev.pdf - Accepted Version
Available under License All rights reserved.
Download (536kB) | Preview
Abstract
The principle of gravity balancing has been studied for a long time. It allows a system to be in
indifferent equilibrium regardless of the configuration. In the literature, gravity balancing
has often been achieved using appropriate combinations of springs and auxiliary links. Some
paper address potential layouts without auxiliary links, but limited to planar mechanisms.
This paper proposes a method to passively balance an anthropomorphic arm, with spatial
kinematics, avoiding the use of auxiliary links.
The approach used in this paper includes the analysis of all the contributions to the potential
energy of the arm. It is shown that they are proportional (according to geometrical and inertial
parameters) to scalar products between configuration-dependent unit vectors and/or configuration-
independent unit vectors.
Analysing the potential energy contributions for each combination of unit vectors, it is shown
how to minimize the number of springs required to balance the mechanism without additional
links. As a result, four possible layouts are developed, all of them using only two springs.
Features and design issues of the four layouts are discussed. Finally, one of them is chosen
for actual implementation.
More Information
Statistics
Downloads
Downloads per month over past year
Share
Actions (login required)
View Item |