MWITONDI, Kassim, SAID, R and ZARGARI, Shahrzad (2017). An Ensemble Method for Intrusion Detection with Conformity to Data Variability. In: 8th Annual International Conference on ICT : Big Data, Cloud and Security (ICT-BDCS 2017, Singapore, 21-22 August 2017. (Unpublished) [Conference or Workshop Item]
Documents
16538:217636
PDF (International Conference Paper)
ksm-ras-shz-final-format.docx.pdf - Accepted Version
Available under License All rights reserved.
ksm-ras-shz-final-format.docx.pdf - Accepted Version
Available under License All rights reserved.
Download (1MB) | Preview
Abstract
The high volume of traffic across modern networks entails use of accurate and reliable automated tools for intrusion detection. The capacity for data mining and machine learning algorithms to learn rules from data are typically constrained by the random nature of training and test data; diversity and disparity of models and related parameters and limitations in data sharing. We propose an ensemble method for intrusion detection which conforms to variability in data. Trained on a high-dimensional 82332x27 data attributes cyber-attack data variables for classification by Decision Trees (DT). Its novelty derives from iterative training and testing several DT models on multiple high-dimensional samples aimed at separating the types of attacks. Unlike Random Forests, the number of variables, p, isn’t altered to enable identification of the importance of predictor variables. It also minimises the influence of multicollinearity and strength of individual trees. Results show that the ensemble model conforms to data variability and yields more insightful predictions on multinomial targets.
More Information
Statistics
Downloads
Downloads per month over past year
Share
Actions (login required)
View Item |