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Abstract 

The high volume of traffic across modern networks entails 

use of accurate and reliable automated tools for intrusion 

detection. The capacity for data mining and machine learning 

algorithms to learn rules from data are typically constrained 

by the random nature of training and test data; diversity and 

disparity of models and related parameters and limitations in 

data sharing. We propose an ensemble method for intrusion 

detection which conforms to variability in data. Trained on a 

high-dimensional 82332x27 data attributes cyber-attack data 

variables for classification by Decision Trees (DT). Its 

novelty derives from iterative training and testing several DT 

models on multiple high-dimensional samples aimed at 

separating the types of attacks. Unlike Random Forests, the 

number of variables, p, isn’t altered to enable identification 

of the importance of predictor variables. It also minimises the 

influence of multicollinearity and strength of individual trees. 

Results show that the ensemble model conforms to data 

variability and yields more insightful predictions on 

multinomial targets.   

Keywords: Bagging, Classification, Cross-Validation, 

Cyber-Security, Data Mining, Decision Trees, Intrusion 

Detection, Over-fitting, Random Forest 

1 Introduction 

The need for reliable automated tools for intrusion detection 

has been steadily growing with data traffic across networks. 

Various data mining and machine learning applications have 

been developed and applied in cyber-security [1] and [2]. 

However, the capacity for these algorithms to learn and 

generalise rules from data are typically constrained by the 

random nature of training and test data; diversity and 

disparity of models and related parameters and limitations in 

data sharing. We propose an ensemble method for intrusion 

detection which conforms to variability in data. It consists of 

multiple models trained and tested on high-dimensional 

subsamples from an 82,332x27 data source, iteratively 

compiling and averaging classification results over repeated 

runs. While its main ideas derive from Bayesian statistics [3], 

domain partitioning [4] and Bagging [5], it proceeds from 

dimensional reduction to classification utilising multiple 

samples and multiple models. That way, it addresses issues of 

randomness in predictive modelling. The algorithm’s novelty 

derives from the foregoing features and its adaptability to 

different algorithms. The paper’s objectives are two-fold    

1) To develop, train and test an ensemble model that 

conforms to data variability. 

2) To carry out predictive modelling of intrusion using 

high-dimensional historical data. 

The paper is organised as follows. Section 2 presents previous 

work relating to cyber-attack predictions. Methods follow in 

Section 3 and data analyses, results and discussions are in 

Section 4. Concluding remarks and recommended potential 

future directions are in Section 5.   

2 Background 

Exploitation of vulnerabilities in computer systems remains a 

major issue among system administrators responsible for 

protecting data in all fields. System administrators typically 

resort to a variety of techniques in their quest to evade 

intrusion - including a variety of intrusion detection/intrusion 

prevention (IDS/IPS) solutions, typically in combination with 

firewalls [6]. These highly-correlated detection and 

prevention activities are generic in monitoring package traffic 

flows, recording, analysing intervening where necessary [7]. 

Related approaches include “host-network-application” 

based intrusion detection techniques which compare inbound 

and outbound packet flow patterns to “expected” patterns [8]. 

Signature-based intrusion detection techniques trace “specific 

signatures” such as byte combinations but despite their 

relatively higher accuracy, they remain vulnerable due to 

their sole dependency on the contents of current ontologies. 

Research efforts continue to build more robustness into the 

method with one recent work proposing a methodology for 

transforming behaviour rules to a state machine to help detect 

intrusion into medical devices [9]. 

The foregoing methods are generally “probabilistic”, trained 

and tested on historical and new data for purposes of 

separating “normal” from “malicious” activities. Their 

generality and scope of coverage mean that they are typically 

likely to miss out on either detection, prevention or both. 

Tracking malicious packet activities within specific scope 

inevitably leads to “misclassification” errors with both to 

false positive and negative allocations. Further, new 

developments in data acquisition, storage and transmission 

bring about, not only new opportunities, but new security 

challenges too. For instance, the conventional perimeter 

security approaches previously used in data centres face 
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serious limitations in the Big Data and Cloud Computing era 

as security moves increasingly towards virtual machines [10]. 

In the next exposition, we outline the methods used to fulfil 

the two objectives in Section 1. 

3 Methods 

A large, high-dimensional dataset is required to train and test 

multiple algorithms on multiple samples. This section 

describes key aspects of the data attributes – generation, 

cleansing, exploration and preparation for mining as well as 

the mechanics of the proposed ensemble. 

3.1 Data Sources 

Data was obtained from thousands of raw network packets of 

the UNSW-NB1 15 created by the IXIA PerfectStorm tool in 

the Cyber Range Lab of the Australian Centre for Cyber 

Security (ACCS). The dataset, created using twelve 

algorithms [11] [2], running through the process in Figure 1 

(bottom) represent a matrix of attributes in the top panel of 

Figure 1. 

 

Figure 1: Data generation [2] (top) and resulting data 

attributes (below)   

                                                           
1 https://www.unsw.adfa.edu.au/australian-centre-for-

cyber-security/cybersecurity/ADFA-NB15-Datasets/  

The comma separated values (CSV) in Figure 1 represent a 

high-dimensional data denoted by  

Ω = [𝜉𝑖𝑗], 𝑖 = 1,2,3, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,3, … , p             (1) 

where 𝑛 is the number of observations and 𝑝 is the number of 

variables. Our analyses utilise 82,332 observations on 27 

variables. We denote the multivariate data as follows. 

X ⊂ Ω | X =  [𝑥𝑖𝜏], 𝑖 = 1,2,3, … , 𝑛 𝑎𝑛𝑑 𝜏 = 1,2,3, … , m ≤ p 

(2) 

 

Figure 2: Attack types alongside “normal” traffic (LHS) 

and in tabular form (RHS) 

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/
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The LHS panel in Figure 2 presents the class label with ten 

levels – nine attack types and the normal traffic whereas the 

RHS panel adds a binary class label combining all 9 attack 

types into one class and normal traffic in another. Our 

modelling strategy is outlined below.  

3.2 Modelling Strategy 

Assuming a correct classification incurs no loss, then given 

data X and two classes 𝐶1,2  a prediction rule is defined as 

𝑃(𝑋|𝐶1)

𝑃(𝑋|𝐶2)
>

𝑐21𝑃(𝐶2)

𝑐12𝑃(𝐶1)
  where 𝑃(𝐶1,2)  are the class priors and 

𝑐21/12  represent the cost of incorrectly allocating an 

observation to a class which also implies that the probability 

of class given data is greater than the corresponding loss i.e., 

𝑃(𝐶1|𝑋) >
𝑐21

𝑐12+𝑐21
 .  It can be shown that the Bayesian 

decision rule for minimum risk is the weighted sum 

Ψ = 𝑐12𝑃(𝐶1)𝜔1 + 𝑐21𝑃(𝐶2)𝜔2 (3) 

where 𝜔1  and 𝜔2  are the probabilities of misclassifying 𝐶1 

and 𝐶2 respectively [12]. Generally, 

Ψ =
1

𝑛
∑ ℒ(�̂�𝑖 , 𝑦𝑖)

𝑛

𝑖=1

 where ℒ(�̂�𝑖 , 𝑦𝑖) = {
0     for �̂�𝑖 = 𝑦𝑖  
1    for �̂�𝑖 ≠ 𝑦𝑖

(4) 

These parameters are data dependent with the empirical rule 

typically being associated with randomness due to the 

allocation region and randomness due to assessing the rule by 

random training and validation data [13] as exhibited in Table 

1. 

ALLOCATION RULE ERRORS DUE TO DATA 

RANDOMNESS 

POPN TRAINING XVAL TEST 

Ψ𝐷,𝑃𝑂𝑃  Ψ𝐷,𝑇𝑅𝑁 Ψ𝐷,𝐶𝑉𝐷 Ψ𝐷,𝑇𝑆𝑇 

Table 1:  Error types associated with domain-

partitioning modelling 

To minimise the error our algorithm repeatedly samples from 

the sub-space X ⊂ Ω and applies multiple DT models for both 

training and testing as outlined below.  

3.2.1 Decision Trees and Random Forests 

If the data attributes in Section 3.1 are used, one at a time, to 

split the data into “normal” and “abnormal” flows by only 

considering the number of observations at node 𝑁∗  then, 

given the attribute 𝑥𝑗 ∈ 𝑋 and adopted threshold, the decision 

tree rule is defined as 

{
𝐶1 = {𝜂 ∈ 𝑁∗: 𝑥𝑗 ≤ 𝑚

𝐶2 = {𝜂 ∈ 𝑁∗: 𝑥𝑗 > 𝑚
                (5) 

The observations in each of the two sets lie on either side of 

the hyper-plane 𝑥𝑗 = 𝑚 chosen in such a way that a given 

measure of impurity is minimised. While training and testing 

this rule on different (random) datasets are the main causes of 

the variations in Table 1, other variations in decision tree 

model results derive from setting model parameters.  

3.2.2 Ensembled Implementation, Assessment and 

Comparison 

Random Forests [14] are constructed from X training samples 

drawn from Ω with replacement with the number of variables 

also sampled from the total of 25, in our case. The procedure 

involves no pruning and so the error rate depends both on the 

multicollinearity of the trees as well as on the strength of 

individual trees in the forest. Dimensional reduction (i.e., 

reducing the number of predictor variables) reduces both 

multicollinearity and tree strength which makes p a crucial 

adjustable parameter. We circumvent this complex scenario 

by applying random forests with unaltered p and generating 

multiple versions of DT models to capture the consistency of 

predictor variables across the repeated runs as outlined in the 

algorithm below. This approach derives from bagging [5] but 

rather than just dividing 𝑋 ⊂ Ω into fixed training and test 

sets, multiple bootstrap training and testing samples are 

repeatedly drawn from with a fixed p. The two models are 

repeatedly trained and tested on these multiple samples, 

recording the key performance parameters – accuracy and 

optimality. Model optimisation and selection are finally done 

by harmonising data variability through cross-validation. 
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The algorithm learns a model 𝐹(𝜑) = 𝑃⏟
(𝑥,𝑦)~𝐷

[𝜑(𝑥) ≠ 𝑦] , 

where D is underlying distribution, and it provides the 

mechanics for assessing the models. Its outputs provide great 

insights into the overall behaviour of the data particularly 

how the attributes relate to the target variable.  

4 Data Analyses, Results and Discussions 

Optimal results of random forests obtained from multiple runs 

are presented in Figure 3 with an estimated Out-of-Bag (OOB) 

error of 18.41% obtained from training sample aggregation of 

1500 trees in the LHS panel while the predicted traffic 

structures are in the RHS panel.  

 

Figure 3: Optimal results of random forests obtained 

after multiple runs yielded a 18.41% OOB error 

As noted above, we circumvent the shortcomings of random 

forests by applying the algorithm in Section 3.2.2. One of its 

key outputs is the tree partitioning in Figure 4 with its overall 

results showing that the importance of the splitting variables 

is in the order sbytes (20), smean (11), dload (11), rate (11), 

sload (8), dur7, sttl (6), dbytes (6), dmean (5), dpkts (4), 

dloss (4), synack (3), tcprtt (3), sjit (2), ackdat (2), dinpkt 

(2), sloss (1), swin (1) and djit (1). Note that the order of the 

attack types (bottom bar charts) of Figure 4 is the same as in 

Figure 3. 

 

Figure 4: Individual random trees showing the main tree 

splitting variables and proportions at nodes 

 

The binary response version of the tree is shown in Figure 5 

the overall results of which order the importance of variables 

as follows: sttl  (14), dload (12), dbytes (7), dpkts, dloss, 

tcprtt, dmean, smean, dinpkt and synack (6), sjit, djit and 

ackdat (5), sbytes (3), sload (2) and rate, sinpkt, dttl, dur, 

spkts (1). This type of discretisation pools together all types 

of attacks versus normal flow and while it may look like 

masking information, it has greater protection potential than 

breaking them down in that the number of attributes required 

to identify intrusion is minimised. Performance comparisons 

of the two targets are provided below.  
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Figure 5: The binary target version of the tree model  

 

System administrators will typically be interested in 

identifying the specific nature of the attacks and while this 

knowledge may help them develop specialist deterrents, the 

dynamic behaviour of attacks can add an extra burden on 

them - both technically and financially. For example, the nine 

different attack types identified in this paper are likely to be 

highly dynamic and so it is reasonable to expect some attacks 

evolving into other previously unknown variants or two or 

more merging. A better option is probably being able to 

generalise – i.e., isolating normal from malicious data flow. 

Below is a comparative performance based on specific and 

general target variables. Figure 6 exhibits error plots based on 

the binary variable “label” with an OOB of just over 6% 

compare this to the 18.41% for the multi-level target above. 

 

Figure 6: Multiple DT models on the binary variable 

While it is technically obvious to see why the binary target 

yields more accurate results than the multi-level target 

variable, it is imperative to focus on the analytical impact of 

randomness in the intrusion types as implied in Table 1. One 

way of achieving that goal is to focus on the variability of the 

model results which is what this paper sought to achieve.  

 

Table 2: Performance of the algorithm on binary target 

data 

Various model variability outputs can be captured for 

comparative purposes. For DT models, for instance, these 

may include the key parameters in Table 2 - the complexity 

parameter, number of splits and variation of validation. We 

can assess the predictive performance of the model by 

looking at the root node error in conjunction with the values 

in this table. The relative error is equivalent to 1 − R2 and it 

represents the error on the observations used to estimate the 

tree model. To avoid overfitting, the two errors and the 

standard deviation provide a guide as to when to stop growing 

the tree – typically RE + XST < CVE.  The training and 



Page 6 of 7 

 

validation errors are obtained by multiplying RE and CVE by 

the XSTD respectively. 

5 Concluding Remarks 

The random nature of analytical studies is the reason behind 

many comparative analyses-based classifier design, datasets 

used and other experimental setups. We presented an iterative 

algorithm that is trained and tested on multiple random 

datasets with the ultimate objectives being to identify key 

predictors of intrusion and predict likelihoods of future 

attacks. It is an ensemble of derivative data mining techniques 

embedded with data adaptation capabilities for intrusion 

detection. Its main idea is to combine existing domain 

knowledge and automated learning techniques for intrusion 

detection which fits in nicely with the overall objective of 

data mining – extraction knowledge from data [15]. The two 

examples drawn from binary and multi-level target variable 

were motivated by the fact that frameworks for attaining the 

two objectives are based on pre-defined ontologies with 

inherently highly dynamic parameters. These parameters tend 

to randomise not only the training and testing datasets, but 

also the predictive power of the models [16]. The proposed 

algorithm can be applied with many learning algorithms and 

as we seek to achieve generalisation rules in isolating 

malicious from normal data flows, we expect that this work 

will pave the way for more model comparisons across 

applications. 
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