MATTHEWS, Stephen G., GONGORA, Mario A. and HOPGOOD, Adrian A. (2011). Evolving temporal fuzzy association rules from quantitative data with a multi-objective evolutionary algorithm. In: Hybrid Artificial Intelligent Systems. London, Springer, 198-205.
![]()
|
PDF
HAIS2011.pdf - Accepted Version Download (123kB) | Preview |
Abstract
A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy association rules and the approach of using a hybridisation of a multi-objective evolutionary algorithm with fuzzy sets. Results show the ability of a multi-objective evolutionary algorithm (NSGA-II) to evolve multiple target itemsets that have been augmented into synthetic datasets.
Item Type: | Book Section |
---|---|
Research Institute, Centre or Group - Does NOT include content added after October 2018: | Materials and Engineering Research Institute > Modelling Research Centre > Microsystems and Machine Vision Laboratory |
Identification Number: | https://doi.org/10.1007/978-3-642-21219-2_26 |
Page Range: | 198-205 |
Depositing User: | Adrian Hopgood |
Date Deposited: | 30 Aug 2012 15:55 |
Last Modified: | 18 Mar 2021 04:46 |
URI: | https://shura.shu.ac.uk/id/eprint/5640 |
Actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year