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Abstract. A novel method for mining association rules that are
both quantitative and temporal using a multi-objective evolutionary
algorithm is presented. This method successfully identifies numerous
temporal association rules that occur more frequently in areas of a
dataset with specific quantitative values represented with fuzzy sets. The
novelty of this research lies in exploring the composition of quantitative
and temporal fuzzy association rules and the approach of using a
hybridisation of a multi-objective evolutionary algorithm with fuzzy
sets. Results show the ability of a multi-objective evolutionary algorithm
(NSGA-II) to evolve multiple target itemsets that have been augmented
into synthetic datasets.

Keywords: multi-objective evolutionary algorithm, fuzzy association
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1 Introduction

Association rule mining is a well established method of data mining that
identifies significant correlations between Boolean items in transactional data
[1]. This paper extends the classical problem by exploring the composition of
two variants of association rule mining with a hyrbid approach.

It is often assumed in classical association rule mining that the dataset
is static, meaning that discovered rules hold across the entire period of the
dataset. However, real-world datasets can have underlying temporal patterns.
For example, an increase in association rule frequency may occur before a large
sports event or when an unforeseen events occur, such as hurricanes (e.g., [2]).
Quantitative association rule mining [3] discovers rules that express associations
between intervals of item attributes (e.g. height, pressure), but common
approaches of discretisation can lead to a loss of information. Evolutionary
Computing (EC) has been used to remove the requirement for prior discretisation
and the synergy of hybridising EC with fuzzy sets has become popular for data
mining tasks [4, 5] such as classification and association rule mining.
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The composition of temporal association rule mining and quantitative
association rule mining is treated as a multi-objective optimisation problem.
The aim is to extract temporal association rules from quantitative data using
fuzzy sets. The temporal association rules sought are those that occur more
frequently over an interval of the dataset, which are seen as an area of greater
density. The advantages of fuzzy sets are they allow a linguistic interpretation,
a smoother transition between boundaries, and better handle uncertainty.
The itemset/association rule space, temporal space and quantitative space
are simultaneously searched and optimised. This paper extends our previous
work in [6] by including a quantitative element, mining multiple occurrences of
association rules and by directly mining association rules.

This paper is organised as follows: Section 2 presents an overview of
related works on association rule mining; Section 3 describes the multi-
objective evolutionary algorithm for mining temporal fuzzy association rules
from quantitative data; Section 4 presents results; and conclusions are drawn in
Section 5.

2 Quantitative and Temporal Association Rule Mining

A disadvantage of classical quantitative association rule mining is the crisp
boundaries of discretised values that potentially hide rules and lose information
[8]. Soft computing techniques can overcome this issue, for example, in [8], a
genetic algorithm evolves attribute intervals for a fixed number of attributes.
Fuzzy association rules deal with inaccuracies in physical measurements and
better handle unnatural boundaries found in crisp partitions. They provide
a linguistic interpretation of numerical values for interfacing with experts.
Evolving fuzzy association rules [9] enhances the interpretability of quantitative
association rules.

There are two common approaches to mining quantitative association rules.
One approach is to tune membership functions and use a deterministic method to
induce rules afterwards (e.g., [10]). Membership functions are tuned to produce
maximum support for 1-itemsets before exhaustively mining rules. Another
approach is to extract association rules whilst defining attribute intervals [8]
or membership functions [9]. The latter approach is adopted in this paper.

A key issue of classical methods, based on the support-confidence framework,
is that temporal patterns with low support can escape below the minimum
support threshold. For example, supermarket items may be sold only during
particular seasonal periods, resulting in annual support values dropping below a
minimum threshold, despite having sufficient support values in a seasonal period.
The lifespan property [11] is an extension on the Apriori algorithm [19] that
incorporates temporal information. This measure of support is relative to the
lifespan of the itemset defined by a time interval, known as temporal support,
corresponding to the first and last occurrences of the itemset. But this does not
consider datasets where the frequency of rules may be skewed towards particular
areas whilst still occurring throughout the entire dataset.
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A step towards analysing areas of a dataset where rules occur more frequently
is cyclic association rule mining [12]. Cyclic rules are induced from user-defined
partitions of regular periods and pattern matching is performed on binary
sequences. Other temporal patterns that can potentially be extracted with our
method are partially periodic rules [13] and calendar-based schemas [14].

Our previous work [6] has demonstrated mining association rules that occur
more frequently over single areas of a dataset with a single objective genetic
algorithm. A multi-objective evolutionary algorithm (MOEA) is used in [7] and
extended here to include association rules and multiple targets.

3 Multi-Objective Evolutionary Search and Optimisation

Extracting a set of fuzzy association rules from areas of the dataset where
the occurrence is greater is treated as a multi-objective problem. This is the
optimisation of two or more functions, whilst satisfying optional constraints
[15]. Optimal solutions found with a MOEA are compromises between objectives
and such trade-offs are often managed with the concept of Pareto optimality. A
solution is said to be Pareto optimal when no change in the solution will improve
one objective without degrading another objective.

A Pareto based MOEA is capable of producing multiple association rules
from a single run through utilising a maintained set of maximally-spread Pareto-
optimal solutions. This is desirable when the cardinality of the optimal set may
be more than one, for instance in the case of multiple temporal patterns. This
improves our previous work [7] which mines single temporal patterns. From the
plethora of MOEAs, we selected NSGA-II [16] for its popularity and ability
to maintain a diverse set of solutions suitable for extracting multiple patterns.
Previous works have used NSGA-II for Subgroup Discovery [17], a closely related
area, and motif sequence discovery [18], a different form of temporal mining.

3.1 Representation

AMichigan approach and mixed coding scheme is used to represent the temporal
interval and fuzzy association rules as

C = (t0, t1, i0, a0, b0, c0, A0, . . . , ik, ak, bk, ck, Ak) (1)

where the temporal interval is defined with t0 and t1 as integers. The items are
integers denoted with i and the basic parameters of the triangular membership
functions are real numbers indicated with a, b and c for association rules with
k distinct items. A binary value in Ak determines if this item belongs to the
antecedent or consequent.

3.2 Objectives

Temporal Support: The temporal support objective, ts, guides the MOEA to
find itemsets that occur more frequently in areas of the dataset. Modified from
[11], this is redefined as a minimisation function
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ts(X, lX) = 1−
σ(X)

lX
(2)

with l denoting a time interval i.e. lX = t1 − t0 where t0 is the lower endpoint,
t1 is the upper endpoint and σ(X) is the itemset support. A minimum temporal
support is used to prevent solutions evolving towards the smallest time interval
of length 1, which would produce a 100% temporal support.

Temporal Rule Confidence: Temporal confidence, tc, helps extract associ-
ation rules from itemsets. This aims to identify specific association rules that
have a temporal occurrence based on temporal support.

tc(X ⇒ Y, lX∪Y ) =
ts(X ∪ Y, lX∪Y )

ts(X, lX)
(3)

Fuzzy Rule Support: This objective optimises the membership function
parameters of matching association rules. The quantitative values are modelled
with triangular fuzzy sets and the objective’s optimal solution is one where the
fuzzy sets support the quantitative values associated with the association rule
to the highest degree of membership. Fuzzy rule support, fs, is the sum of the
degrees of memberships, sum(µ(x(i))), for a chromosome itemset, x(i), in the ith
transaction.

fs = (k · (t1 − t0))−

t1
∑

i=t0

sum(µ(x(i))) (4)

sum(µ(x(i))) =

k
∑

j=0

{

µ(x
(i)
j ), dataset item matches gene item

0, otherwise .
(5)

µ(x
(i)
j ) =















x
(i)
j

−a

b−a
, if a ≤ x

(i)
j < b

c−x
(i)
j

c−b
, if b ≤ x

(i)
j ≤ c

0, otherwise .

(6)

Equation 4 subtracts the sum of the actual degrees of memberships
from the maximum possible sum if all items in a transaction match those
in the chromosome. Equation 5 performs the summation of actual degrees
of memberships for chromosome items matching dataset transaction items.
Equation 6 is the triangular memerbship function.



Evolving Temporal Fuzzy ARs from Quantitative Data with a MOEA 5

Membership Function Widths: The aim of this objective is to prevent the
membership function parameters evolving to cover the entire range of values
i.e. the feet of the membership function (a and c) nearing the limits of the
attribute values. Without this objective solutions evolve to cover the entire range
of attribute values because this yields higher support values as it includes more
items.

mf widths =

{

∑k

j=0 cj − aj , if cj − aj > 0

nitems, otherwise .
(7)

3.3 Initialisation and Genetic Operators

The initial population is randomly generated with lower and upper endpoints
being within proximity to the first and last transactions. An endpoint range is
defined for two purposes: limit the range for creating endpoints and also for
mutating endpoints. Time endpoints initialised near dataset boundaries provide
starting solutions with large temporal coverages of the dataset. Without the
endpoint range, random sampling of time intervals occurs. This may lead to
some potentially strong itemsets being lost, so an initial large temporal coverage,
combined with the mutation operator, provides more opportunity for solutions
with great potential that initially may be weak.

Crossover is adapted to handle quantitative data from the method proposed
in [6]. For mutating genes that form the time interval endpoints, the values
are generated within the endpoint range (epr) where the midpoint is the value
of the current gene (g), such that the mutated value is a member of the set
{−epr/2, . . . , g, . . . , epr/2}. This reduces the effect of randomly sampling the
dataset. The endpoint range is decremented every generation until reaching 10,
to allow further mutations.

4 Experimental Study

4.1 Methodology

The IBM Quest Synthetic Data Generator [19] has been extended to include
quantitative attributes. The dataset has these features: 1000 transactions, 50
items, an average transaction size of 10 and a maximum size for quantitative
values of 20. The Apriori algorithm is used to identify relatively low (0.2%),
medium (1.7%) and high support (3.5%) association rules that are augmented
into areas of the dataset to produce temporal patterns. This is based on the
process defined in [6] that creates target temporal patterns with varyling levels
of difficulty and is extended to include multiple temporal patterns. The minimum
temporal support was set to 30. Figure 1 depicts the frequency of a quantitative
itemset augmented into the first half and second half of a dataset to demonstrate
the increased occurrence of the same pattern in two areas. Table 1 shows the
itemsets used for augmentation. Augmentation is based on itemset support
because this is used to extract fuzzy association rules.
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Fig. 1. Histogram of itemset {8, 12, 21, 45} with high support (3.5%) (Bins 250 and
750 have one extra itemset that does not contain the quantitative values).

4.2 Results

The augmented itemsets were identified with 50 runs of NSGA-II on each dataset,
although with varying success for different levels of difficulty. The results are
summarised in Table 1. The itemsets were deemed to be successfully identified if
the entire itemset matched that of the augmented itemset and it was in proximity
of the endpoints, t0 and t1. The number of temporal patterns identified increases
with the support level of the augmented itemset. For each level of difficulty there
is one area of the dataset that is more likely to be identified as a temporal pattern.
For example, the high support (3.5%) dataset identified the 1st temporal pattern
(transactions 250–289) in 12 runs while identifying the 2nd (transactions 750–
788) in 38 runs. Also, with a higher support value of augmented itemsets there
is an increase in identifying both temporal patterns. The correct identification of
the quantitative attributes with fuzzy sets varies greatly and not all attributes
were correctly identified in a solution.

Table 1. Results of augmenting same quantitative itemset, or temporal patterns (TP),
in two locations

Endpoint
Itemset

Aug. TP Qty. of TP identified
t0 t1 Sup. identified 1 2

250 289 24 (3) 31 (7) 32 (12) 38 (16)
0.2%

8
7 1

750 788 24 (3) 31 (7) 32 (12) 38 (16) 1

250 289 12 (3) 31 (7) 41 (12) 48 (16)
1.7%

19
15 8

750 788 12 (3) 31 (7) 41 (12) 48 (16) 12

250 289 8 (3) 12 (7) 21 (12) 45 (16)
3.5%

47
12 38

750 788 8 (3) 12 (7) 21 (12) 45 (16) 41

Three of the objectives are plotted in Figure 2, both augmented itemsets
in the final solution are distinguished here. This graph can be used to view
the trade-offs between fuzzy association rules, which is of particular use for
knowledge discovery in real-world applications. This figure demonstrates how
the objectives conflict, particularly for membership function widths and fuzzy
rule support.
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Fig. 2. Three objectives for best solutions in a portion of a final population augmented
with a high support (3.5%) itemset

5 Conclusions

We have used a hyrbid approach of a MOEA (NSGA-II) and fuzzy sets to evolve
multiple temporal association rules from quantitative transaction data. This
demonstrates the ability to find association rules that occur more frequently
in numerous areas of a dataset. A MOEA maintains diversity and so allows
for numerous temporal patterns to evolve. The advantages of the proposed
approach is that it does not exhaustively search the various spaces, it requires
no discretisation and yields numerous diverse association rules.

Future work will explore enhancing the robustness of identifying quantitative
attributes and evolving low support itemsets. Real-world datasets will be used as
these are crucial to demonstrating the impact of this research. We will compare
statistical methods, such as temporal based Apriori methods, and other MOEAs
with this approach to explore its suitability.
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12. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic Association Rules. In: ICDE,
Washington, DC, USA, pp. 412–421 (1998)

13. Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related
databases. In: KDD, New York, NY, USA, pp. 214–218 (1998)

14. Li, Y., Ning, P., Wang, X. S., Jajodia, S.: Discovering calendar-based temporal
association rules. Data & Knowledge Engineering, 44(2), 193–218 (2003)

15. Coello, C. A. C., Lamont, G. B., van Veldhuizen, D. A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer (2007)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2), 182–19 (2002)

17. Carmona, C., Gonzalez, P., del Jesus, M., Herrera, F.: NMEEF-SD: Non-dominated
Multiobjective Evolutionary Algorithm for Extracting Fuzzy Rules in Subgroup
Discovery. IEEE Transactions on Fuzzy Systems, 18(5), 958–970 (2010)

18. Kaya, M.: MOGAMOD: Multi-objective genetic algorithm for motif discovery.
Expert Systems with Applications, 36 (2, Part 1), 1039–1047 (2009)

19. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB,
Santiago, Chile, pp. 487–499 (1994)


