The N-Terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation

GREGGIO, Elisa, LEONG, Su Ling, HINDS, Mark G., CONNOR, Andrea R., SMITH, David, ILLES-TOTH, Eva, PHAM, Chi L. L., BARNHAM, Kevin J. and CAPPAI, Roberto (2015). The N-Terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation. PLoS ONE, 10 (2), e0116497. [Article]

Documents
9508:20413
[thumbnail of Smith_N_terminal_residues_43_to_60.pdf]
Preview
PDF
Smith_N_terminal_residues_43_to_60.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (10MB) | Preview
Abstract
α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43-140) and C-terminally (1-95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA: α-syn oligomers, albeit 1-95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43-140 protein, we analysed the structural characteristics of the DA:α-syn 43-140 dimer and α-syn 43-140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item