SALIM, H.I., PATEL, V., ABBAS, A., WALLS, J. M. and DHARMADASA, I (2015). Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. Journal of Materials Science: Materials in Electronics, 26 (5), 3119-3128. [Article]
Documents
9419:20166
PDF
Salim_Electrodeposition.pdf - Accepted Version
Available under License All rights reserved.
Salim_Electrodeposition.pdf - Accepted Version
Available under License All rights reserved.
Download (1MB) | Preview
Abstract
Cadmium telluride (CdTe) thin films have been electrodeposited (ED) on glass/fluorine-doped tin oxide (FTO) substrates using simplified two-electrode system in acidic and aqueous solution containing Cd(NO3)2 4H2O and TeO2. The X-ray diffraction (XRD), optical absorption, photoelectrochemical (PEC) cell measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been carried out to study the structural, optical, electrical and morphological properties of the CdTe layers. The XRD study shows that the ED-CdTe layers are polycrystalline with cubic crystal structure. Results obtained from optical absorption reveal that the bandgaps of the as-deposited and the CdCl2 treated CdTe layers are in the ranges ~1.50 to ~1.54 eV and ~1.46 to ~1.51 eV, respectively. Observation from PEC measurements indicates a p-, i- and n-type electrical conductivity for as-deposited CdTe layers grown in the cathodic voltage range (1,247–1,258) mV. The SEM images indicate noticeable change in CdTe grain size from ~85 to ~430 nm after CdCl2 treatment with uniform surface coverage of the glass/FTO substrate. The TEM images show the columnar growth structure for as-deposited and CdCl2 treated CdTe layers. The TEM images also indicate an increase in grain’s diameter from ~50 to ~200 nm after CdCl2 treatment.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |