HIRSCH, Laurence, SAEEDI, M and HIRSCH, R (2005). Evolving rules for document classification. In: Genetic programming. Lecture Notes in Computer Science (3447). Berlin, Springer, 85-95. [Book Section]
Documents
6622:11796
Abstract
We describe a novel method for using Genetic Programming to create compact classification rules based on combinations of N-Grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that because the induced rules are meaningful to a human analyst they may have a number of other uses beyond classification and provide a basis for text mining applications.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |