ALHINAI, Almajd and SCHENKEL, Torsten (2026). Numerical Study into the Spanwise Effects for the Three-Dimensional Unsteady Flow over a Bio-Inspired Corrugated Infinite Wing at Low Reynolds Number. Biomimetics, 11 (2): 90. [Article]
Documents
36763:1167654
PDF
biomimetics-11-00090.pdf - Published Version
Available under License Creative Commons Attribution.
biomimetics-11-00090.pdf - Published Version
Available under License Creative Commons Attribution.
Download (17MB) | Preview
Abstract
Corrugated insect wings inspire biomimetic aerodynamic design, yet their behaviour at low and transitional Reynolds numbers remains not fully understood. This study presents a three-dimensional computational analysis of flow over an infinite corrugated wing across Reynolds numbers from 10 to 10,000 and angles of attack from −5 to 20°, with emphasis on spanwise effects. An expanded verification and validation procedure ensured numerical reliability. At the lowest Reynolds numbers, the flow is steady and largely two-dimensional, with localised recirculation zones. As Reynolds numbers or angles of attack increase, the flow transitions to periodic vortex shedding, and three-dimensional structures appear. At a Reynolds number of ten thousand, periodic shedding occurs at zero degrees incidence, indicating a shift toward turbulent or bluff body-like behaviour. The examined corrugated profile does not exhibit a lift-to-drag benefit over smooth aerofoils in steady gliding, although root section corrugation helps delay separation in transitional regimes. This behaviour reflects mechanisms used by dragonflies to maintain stable gliding despite textured wings. By extending flow regime classification, the study identifies conditions where two-dimensional assumptions fail and highlights the influence of spanwise flow structures. These findings deepen understanding of insect wing aerodynamics and support biomimetic design of future wings.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
![]() |
View Item |


Tools
Tools
