GUO, Xiuhua, XU, Guoyang, LI, Shaolin, SONG, Kexing, LIU, Song, WANG, Xu, LUO, Quanshun, LIU, Haitao and SONG, Hao (2024). Enhanced plastic deformation ability of copper matrix composites through synergistic strengthening of nano-Al2O3 and Cr particles. Materials Science and Engineering: A, 910: 146886. [Article]
Documents
33916:644474
PDF
Accepted version.pdf - Accepted Version
Available under License Creative Commons Attribution.
Accepted version.pdf - Accepted Version
Available under License Creative Commons Attribution.
Download (2MB) | Preview
Abstract
The commercial application of Al2O3/Cu composites (ODS copper) with high Al2O3 content is consistently restricted by their plastic deformability. In order to synergistically improve the plastic deformability of Al2O3/Cu composites, Al2O3/Cu–Cr composites with different Cr contents are prepared by internal oxidation combined with heat treatment by replacing part of the Al2O3 particles with Cr phases heat treatment. The effects of Cr content on the microstructure and plastic deformability of Al2O3/Cu–Cr composites are investigated. It is found that the nano-Al2O3 (8 nm) and Cr (25 nm) particles are uniformly distributed in the copper matrix, and both reach a semi-congruent interface with copper matrix. Meanwhile, the copper matrix undergoes a transition from a [111]Cu hard orientation to a [100]Cu soft orientation, and the increase in Cr content leads to a more pronounced degree of recrystallization in the Al2O3/Cu–Cr composites. The results of geometric phase analysis (GPA) show that the coordinated deformability between Cr and Cu is better than that between Al2O3 and Cu. The elongation of 2.5Al2O3/Cu-0.3Cr composite increased to 24.48 % from 22.47 % of the Cr-free 2.8Al2O3/Cu composite. The results of tensile strength calculations show that the tensile strength of Al2O3/Cu–Cr composites is mainly dominated by matrix strengthening and Orowan strengthening induced by Al2O3 particles, while grain strengthening, dislocation strengthening, and Orowan strengthening induced by Cr particles play a secondary role. The correlation coefficient (R2) is 0.95 after fitting the experimental and theoretical values of tensile strength of Al2O3/Cu–Cr composites.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |