Vision-based movement recognition reveals badminton player footwork using deep learning and binocular positioning

LUO, J, HU, Y, DAVIDS, Keith, ZHANG, D, GOUIN, C, LI, X and XU, X (2022). Vision-based movement recognition reveals badminton player footwork using deep learning and binocular positioning. Heliyon, 8: e10089. [Article]

Documents
30683:607820
[thumbnail of PIIS2405844022013779.pdf]
Preview
PDF
PIIS2405844022013779.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB) | Preview
Abstract
Coordinating dynamic interceptive actions in sports like badminton requires skilled performance in getting the racket into the right place at the right time. For this reason, the strategic movement and placement of one's feet, or footwork, is an important part of competitive performance. Developing an automated, efficient, and economical method to record individual movement characteristics of players is critical and can benefit athletes and motor control specialists. Here, we propose new methods for recording data on the footwork of individual badminton players, in which deep learning is used to obtain image coordinates (2D) of their shoes and binocular positioning to reconstruct the 3D coordinates of the shoes. Results show that the final positioning accuracy is 74.7%. Using the proposed methods, we revealed inter-individual adaptations in the footwork of several participants during competitive performance. The data provided insights on how individual participants coordinated footwork to intercept the projectile, by varying the distance traveled on court and jump height. Compared with visual observations by biomechanists and motor control specialists, the proposed methods can obtain quantitative data, provide analysis and evaluation of each participant's performance, revealing personal characteristics that could be targeted to shape the individualized training programs of players to refine their badminton footwork.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item