Frequency upconversion mechanism in Ho3+/Yb3+-codoped TeO2–TiO2–La2O3 glasses

GUPTA, Gaurav, BALAJI, Sathravada, BISWAS, Kaushik and ANNAPURNA, Kalyandurg (2019). Frequency upconversion mechanism in Ho3+/Yb3+-codoped TeO2–TiO2–La2O3 glasses. Applied Physics B, 125 (2). [Article]

Abstract
Frequency upconversion from Ho3+/Yb3+-codoped glass or crystal under Yb3+ sensitization is a known phenomenon. However, inconsistencies are prevalent in the understanding of double energy transfer mechanisms for Ho3+/Yb3+-codoped systems. In this context, rate equations are proposed for Ho3+/Yb3+-codoped low-phonon TeO2–TiO2–La2O3 glass under Yb3+ sensitization with continuous and pulsed excitations. The proposed rate equations are validated with experimental results to elucidate the mechanisms responsible for populating 5(S2, F4) and 5F5 energy levels of Ho3+ ion. The solutions of rate equations with experimental results are substantiating the occurrence of both excited state absorption (ESA) and energy transfer upconversion (ETU) mechanisms in populating Ho3+:5(S2, F4) level, though higher concentration of Ho3+ ion would decrease the probability of ETU and increase of ESA. In contrast, Ho3+:5F5 level has been populated via ETU only. Numerical solutions to the rate equations are also proposed to elucidate the mechanics for populating 5(S2, F4) and 5F5 levels of Ho3+ ion. The proposed rate equation for pulsed excitation explains the characteristics of respective decay curves, which are further used to quantify energy transfer coefficient (W02) as (1.77 ± 0.12) × 10− 17cm3 s−1 for Ho3+/Yb3+-codoped TTL glass host.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item