Location prediction optimisation in WSNs using kriging interpolation

ALI, Arshad, IKPEHAI, Augustine, ADEBISI, Bamidele and MIHAYLOVA, Lyudmila (2016). Location prediction optimisation in WSNs using kriging interpolation. IET Wireless Sensor Systems, 6 (3), 74-81. [Article]

Documents
23891:524503
[thumbnail of Kriging5.pdf]
Preview
PDF
Kriging5.pdf - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview
Abstract
© The Institution of Engineering and Technology 2016. Many wireless sensor network (WSN) applications rely on precise location or distance information. Despite the potentials of WSNs, efficient location prediction is one of the subsisting challenges. This study presents novel prediction algorithms based on a Kriging interpolation technique. Given that each sensor is aware of its location only, the aims of this work are to accurately predict the temperature at uncovered areas and estimate positions of heat sources. By taking few measurements within the field of interest and by using Kriging interpolation to iteratively enhance predictions of temperature and location of heat sources in uncovered regions, the degree of accuracy is significantly improved. Following a range of independent Monte Carlo runs in different experiments, it is shown through a comparative analysis that the proposed algorithm delivers approximately 98% prediction accuracy.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item