On the handling performance of a vehicle with different front-to-rear wheel torque distributions

LENZO, Basilio, BUCCHI, Francesco, SORNIOTTI, Aldo and FRENDO, Francesco (2018). On the handling performance of a vehicle with different front-to-rear wheel torque distributions. Vehicle System Dynamics. [Article]

Documents
23270:518317
[thumbnail of 12 month embargo]
Preview
PDF (12 month embargo)
Handling_performance_Lenzo_et_al.pdf - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview
Abstract
The handling characteristic is a classical topic of vehicle dynamics. Usually, vehicle handling is studied through the analysis of the understeer coe�cient in quasi-steady-state maneuvers. In this paper, experimental tests are performed on an electric vehicle with four independent mo- tors, which is able to reproduce front-wheel-drive, rear-wheel-drive and all-wheel-drive (FWD, RWD and AWD, respectively) architectures. The handling characteristics of each architecture are inferred through classical and new concepts. More speci�cally, the study presents a pro- cedure to compute the longitudinal and lateral tire forces, which is based on a �rst estimate and a subsequent correction of the tire forces that guarantee the equilibrium. A yaw moment analysis is then performed to identify the contributions of the longitudinal and lateral forces. The results show a good agreement between the classical and new formulations of the un- dersteer coe�cient, and allow to infer a relationship between the understeer coe�cient and the yaw moment analysis. The handling characteristics for the considered maneuvers vary with the vehicle speed and front-to-rear wheel torque distribution. In particular, an apparently surprising result arises at low speed, where the RWD architecture is the most understeering con�guration. This outcome is discussed through the yaw moment analysis, highlighting the yaw moment caused by the longitudinal forces of the front tires, which is signi�cant for high values of lateral acceleration and steering angle.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item