RIPL: A Parallel Image Processing Language for FPGAs

STEWART, Rob, DUNCAN, Kirsty, MICHAELSON, Greg, GARCIA, Paulo, BHOWMIK, Deepayan and WALLACE, Andrew (2018). RIPL: A Parallel Image Processing Language for FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 11 (1). [Article]

Documents
18203:344755
[thumbnail of PDF28236303-533420776.pdf]
Preview
PDF
PDF28236303-533420776.pdf - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview
Abstract
Specialized FPGA implementations can deliver higher performance and greater power efficiency than embedded CPU or GPU implementations for real-time image processing. Programming challenges limit their wider use, because the implementation of FPGA architectures at the register transfer level is time consuming and error prone. Existing software languages supported by high-level synthesis (HLS), although providing a productivity improvement, are too general purpose to generate efficient hardware without the use of hardware-specific code optimizations. Such optimizations leak hardware details into the abstractions that software languages are there to provide, and they require knowledge of FPGAs to generate efficient hardware, such as by using language pragmas to partition data structures across memory blocks. This article presents a thorough account of the Rathlin image processing language (RIPL), a high-level image processing domain-specific language for FPGAs. We motivate its design, based on higher-order algorithmic skeletons, with requirements from the image processing domain. RIPL’s skeletons suffice to elegantly describe image processing stencils, as well as recursive algorithms with nonlocal random access patterns. At its core, RIPL employs a dataflow intermediate representation. We give a formal account of the compilation scheme from RIPL skeletons to static and cyclostatic dataflow models to describe their data rates and static scheduling on FPGAs. RIPL compares favorably to the Vivado HLS OpenCV library and C++ compiled with Vivado HLS. RIPL achieves between 54 and 191 frames per second (FPS) at 100MHz for four synthetic benchmarks, faster than HLS OpenCV in three cases. Two real-world algorithms are implemented in RIPL: visual saliency and mean shift segmentation. For the visual saliency algorithm, RIPL achieves 71 FPS compared to optimized C++ at 28 FPS. RIPL is also concise, being 5x shorter than C++ and 111x shorter than an equivalent direct dataflow implementation. For mean shift segmentation, RIPL achieves 7 FPS compared to optimized C++ on 64 CPU cores at 1.1, and RIPL is 10x shorter than the direct dataflow FPGA implementation.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item