Orbit-counting in non-hyperbolic dynamical systems

EVEREST, Graham, MILES, Richard, STEVENS, Shaun and WARD, Thomas (2007). Orbit-counting in non-hyperbolic dynamical systems. Journal für die reine und angewandte Mathematik, 608, 155-182. [Article]

Abstract
There are well-known analogues of the prime number theorem and Mertens' Theorem for dynamical systems with hyperbolic behaviour. Here we consider the same question for the simplest non-hyperbolic algebraic systems. The asymptotic behaviour of the orbit-counting function is governed by a rotation on an associated compact group, and in simple examples we exhibit uncountably many different asymptotic growth rates for the orbit-counting function. Mertens' Theorem also holds in this setting, with an explicit rational leading coefficient obtained from arithmetic properties of the non-hyperbolic eigendirections. The proof of the dynamical analogue of Mertens' Theorem uses transcendence theory and Dirichlet characters.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item