Orbit-counting for nilpotent group shifts

MILES, Richard and WARD, Thomas (2008). Orbit-counting for nilpotent group shifts. Proceedings of the American Mathematical Society (PROC), 137, 1499-1507. [Article]

Abstract
We study the asymptotic behaviour of the orbit-counting function and a dynamical Mertens' theorem for the full G-shift for a finitely-generated torsion-free nilpotent group G. Using bounds for the M{\"o}bius function on the lattice of subgroups of finite index and known subgroup growth estimates, we find a single asymptotic of the shape
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item