Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic

SALAMA, Abdussalam, SAATCHI, Reza and BURKE, Derek (2017). Adaptive sampling technique using regression modelling and fuzzy inference system for network traffic. In: CUDD, Peter and DE WITTE, Luc, (eds.) Harnessing the power of technology to improve lives. Studies in Health Technology and Informatics (242). IOS Press, 592-599. [Book Section]

Documents
16789:247197
[thumbnail of AAATE Salama 23 05 2017 Final_0.pdf]
Preview
PDF
AAATE Salama 23 05 2017 Final_0.pdf - Accepted Version
Available under License All rights reserved.

Download (745kB) | Preview
Abstract
Electronic-health relies on extensive computer networks to facilitate access and to communicate various types of information in the form of data packets. To examine the effectiveness of these networks, the traffic parameters need to be analysed. Due to quantity of packets, examining their transmission parameters individually is not practical, especially when performed in real time. Sampling allows a subset of packets that accurately represents the original traffic to be chosen. In this study an adaptive sampling method based on regression and fuzzy inference system was developed. It dynamically updates the sampling by responding to the traffic changes. Its performance was found to be superior to the conventional non-adaptive sampling methods.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Available Versions of this Item

Actions (login required)

View Item View Item