The effect of transition metals on hydrogen migration and catalysis in cast Mg-Ni alloys

CHO, Y.H., AMINORROAYA YAMINI, Sima, LIU, H.K. and DAHLE, A.K. (2011). The effect of transition metals on hydrogen migration and catalysis in cast Mg-Ni alloys. International Journal of Hydrogen Energy, 36 (8), 4984-4992. [Article]

Abstract
The inexpensive fabrication technique of casting is applied to develop new Mg–Ni based hydrogen storage alloys with improved hydrogen sorption properties. A nanostructured eutectic Mg–Mg2Ni is formed upon solidification which introduces a large area of interfaces along which hydrogen diffusion can occur with high diffusivity. After a few cycles of hydrogenation and dehydrogenation, an ultrafine porous structure formed in the eutectic Mg–Mg2Ni and some cracks developed along the interface between the eutectic and the α-Mg matrix. This indicates that hydrogen atoms introduced into the alloys preferentially migrate along the interfaces in the nanostructured eutectic which enables effective short-range diffusion of hydrogen. Furthermore, transition metals (TMs) such as Nb, Ti and V in the range 240–560 ppm are added directly to molten Mg-10 wt% Ni alloys and are found to form intermetallic compounds with Ni during solidification. The alloys can store 5.6–6.3 wt% hydrogen at 350 °C and 2 MPa. TM-rich intermetallics distributed homogeneously in the cast alloys appear to play a key role in accelerating the nucleation of Mg from MgH2 upon dehydrogenation. This leads to a significant improvement in the hydrogen desorption kinetics.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item