Water pipeline failure due to water hammer effects

SCHMITT, C., PLUVINAGE, G., HADJ-TAIEB, E. and AKID, R. (2006). Water pipeline failure due to water hammer effects. Fatigue and fracture of engineering materials and structures, 29 (12), 1075-1082. [Article]

Abstract
A numerical model has been established in order to simulate the propagation of pressure waves in water networks. The present model formulation is based on a system of partial hyperbolic differential equations. This system has been solved via the characteristics method. The current model provides the necessary data and the necessary damping of water hammer waves, taking into account the structure of the pipe network and the pressure loss. The numerical algorithm estimates the maximum pressure values resulting from the water hammer when closing valves in the network and consequently, the maximum stresses in the pipes have been calculated. In the case of simultaneous closing of several valves, the over pressure can exceed the admissible pressure. In this case, the severity of a defect such as a corrosion crater (pit) has been estimated by computing a safety factor for the stress distribution at the defect tip. This allows the applied notch stress intensity factor to be obtained. To investigate the defect geometry effects, semi-spherical and semi-elliptical defects are deemed to exist in up to one-half of the thickness of the pipe wall. The outcomes have been introduced into the structural integrity assessment procedure (SINTAP) failure diagram assessment (FAD) in order to obtain the safety factor value. Conventionally, it is considered that a failure hazard exists if this safety factor is less than two.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item