On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

QUILES-CARRILLO, Luis, MONTAVA-JORDÀ, Sergi, BORONAT, Teodomiro, SAMMON, Chris, BALART, Rafael and TORRES-GINER, Sergio (2019). On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films. Polymers, 12 (1), e31.

Sammon_UseOfGallicAcid(VoR).pdf - Published Version
Creative Commons Attribution.

Download (3MB) | Preview
Official URL: https://www.mdpi.com/2073-4360/12/1/31
Link to published version:: https://doi.org/10.3390/polym12010031


This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications.

Item Type: Article
Additional Information: ** From MDPI via Jisc Publications Router ** Licence for this article: https://creativecommons.org/licenses/by/4.0/ **Journal IDs: eissn 2073-4360 **History: published 23-12-2019; accepted 19-12-2019
Uncontrolled Keywords: bio-HDPE, GA, natural additives, thermal resistance, UV stability, food packaging
Identification Number: https://doi.org/10.3390/polym12010031
Page Range: e31
SWORD Depositor: Colin Knott
Depositing User: Colin Knott
Date Deposited: 06 Jan 2020 11:22
Last Modified: 18 Mar 2021 01:07
URI: https://shura.shu.ac.uk/id/eprint/25606

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics