Assessment and improvement of quality of service in wireless networks using fuzzy and hybrid genetic-fuzzy approaches

SARAIREH, Mohammed, SAATCHI, Reza, ALKHAYATT, Samir and STRACHAN, Rebecca (2007). Assessment and improvement of quality of service in wireless networks using fuzzy and hybrid genetic-fuzzy approaches. Artificial intelligence review, 27 (2-3), 95-111. [Article]

Abstract
Fuzzy and hybrid genetic-fuzzy approaches were used to assess and improve quality of service (QoS) in simulated wireless networks. Three real-time audio and video applications were transmitted over the networks. The QoS provided by the networks for each application was quantitatively assessed using a fuzzy inference system (FIS). Two methods to improve the networks' QoS were developed. One method was based on a FIS mechanism and the other used a hybrid genetic-fuzzy system. Both methods determined an optimised value for the minimum contention window (CW (min)) in IEEE 802.11 medium access control (MAC) protocol. CW (min) affects the time period a wireless station waits before it transmits a packet and thus its value influences QoS. The average QoS for the audio and video applications improved by 42.8% and 14.5% respectively by using the FIS method. The hybrid genetic-fuzzy system improved the average QoS for the audio and video applications by 35.7% and 16.5% respectively. The study indicated that the devised methods were effective in assessing and significantly improving QoS in wireless networks.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item