Computer simulation of a liquid-crystal anchoring transition

BARMES, F. and CLEAVER, D. J. (2004). Computer simulation of a liquid-crystal anchoring transition. Physical Review E (PRE), 69 (6). [Article]

Abstract
We present a study of the effects of confinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential. Using geometrical arguments to calculate the molecular volume absorbed at the substrates, we show that both planar and homeotropic arrangements can be obtained using this model. Monte Carlo simulations are then used to perform a systematic study of the model's behavior as a function of the system density and the hard-needle-wall interaction parameter. As well as showing the homeotropic to planar anchoring transition, the anchoring phase diagrams computed from these simulations indicate regions of bistability. This bistable behavior is examined further through the explicit simulation of field-induced two-way switching between the two arrangements.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item