A hybrid multi-objective evolutionary approach for optimal path planning of a hexapod robot

CARBONE, Giuseppe and DI NUOVO, Alessandro (2016). A hybrid multi-objective evolutionary approach for optimal path planning of a hexapod robot. In: BLESA, Maria J., BLUM, Christian, CANGELOSI, Angelo, CUTELLO, Vincenzo, DI NUOVO, Alessandro, PAVONE, Mario and TALBI, El-Ghazali, (eds.) Hybrid Metaheuristics : 10th International Workshop, HM 2016, Plymouth, UK, June 8-10, 2016, Proceedings. Lecture notes in computer science (9668). Springer International Publishing, 131-144. [Book Section]

Documents
13057:45142
[thumbnail of Di nuovo - Optimal Design of an Hexapod Robot_final.pdf]
Preview
PDF
Di nuovo - Optimal Design of an Hexapod Robot_final.pdf - Accepted Version
Available under License All rights reserved.

Download (276kB) | Preview
Abstract
Hexapod robots are six-legged robotic systems, which have been widely investigated in the literature for various applications including exploration, rescue, and surveillance. Designing hexapod robots requires to carefully considering a number of different aspects. One of the aspects that require careful design attention is the planning of leg trajectories. In particular, given the high demand for fast motion and high-energy autonomy it is important to identify proper leg operation paths that can minimize energy consumption while maximizing the velocity of the movements. In this frame, this paper presents a preliminary study on the application of a hybrid multi-objective optimization approach for the computer-aided optimal design of a legged robot. To assess the methodology, a kinematic and dynamic model of a leg of a hexapod robot is proposed as referring to the main design parameters of a leg. Optimal criteria have been identified for minimizing the energy consumption and efficiency as well as maximizing the walking speed and the size of obstacles that a leg can overtake. We evaluate the performance of the hybrid multi-objective evolutionary approach to explore the design space and provide a designer with an optimal setting of the parameters. Our simulations demonstrate the effectiveness of the hybrid approach by obtaining improved Pareto sets of trade-off solutions as compared with a standard evolutionary algorithm. Computational costs show an acceptable increase for an off-line path planner. © Springer International Publishing Switzerland 2016.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item