Multiple-component lattice Boltzmann equation for fluid-filled vesicles in flow.

HALLIDAY, Ian, LISHCHUK, Sergey, SPENCER, T J, PONTRELLI, G and CARE, C M (2013). Multiple-component lattice Boltzmann equation for fluid-filled vesicles in flow. Physical review. E, Statistical, nonlinear, and soft matter physics, 87 (2), 023307.

Full text not available from this repository.
Link to published version::
Related URLs:


    We document the derivation and implementation of extensions to a two-dimensional, multicomponent lattice Boltzmann equation model, with Laplace law interfacial tension. The extended model behaves in such a way that the boundary between its immiscible drop and embedding fluid components can be shown to describe a vesicle of constant volume bounded by a membrane with conserved length, specified interface compressibility, bending rigidity, preferred curvature, and interfacial tension. We describe how to apply this result to several, independent vesicles. The extended scheme is completely Eulerian, and it represents a two-way coupled vesicle membrane and flow within a single framework. Unlike previous methods, our approach dispenses entirely with the need explicitly to track the membrane, or boundary, and makes no use whatsoever of computationally expensive and intricate interface tracking and remeshing. Validation data are presented, which demonstrate the utility of the method in the simulation of the flow of high volume fraction suspensions of deformable objects.

    Item Type: Article
    Research Institute, Centre or Group - Does NOT include content added after October 2018: Materials and Engineering Research Institute > Polymers Nanocomposites and Modelling Research Centre > Materials and Fluid Flow Modelling Group
    Identification Number:
    Page Range: 023307
    Depositing User: Helen Garner
    Date Deposited: 04 Apr 2014 13:00
    Last Modified: 13 Jun 2017 13:15

    Actions (login required)

    View Item View Item


    Downloads per month over past year

    View more statistics