Zenithal bistable device: comparison of modeling and experiment

SPENCER, T. J., CARE, C. M., AMOS, R. M. and JONES, J. C. (2010). Zenithal bistable device: comparison of modeling and experiment. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 82 (2).

[img]
Preview
PDF
shu_zbd_paper_V1-12.pdf

Download (2MB) | Preview
Link to published version:: https://doi.org/10.1103/PhysRevE.82.021702
Related URLs:

    Abstract

    A comparative modeling and experimental study of the zenithal bistable liquid crystal device is presented. A dynamic Landau de Gennes theory of nematic liquid crystals is solved numerically to model the electric field induced latching of the device and the results are compared with experimental measurements and theoretical approximations. The study gives a clear insight into the latching mechanism dynamics and enables the dependence of the device latching on both material parameters and surface shape to be determined. Analytical approximation highlights a route to optimize material selection in terms of latching voltages and the numerical model, which includes an accurate surface representation, recovers the complex surface shape effects. Predictions of device performance are presented as a function of both surface anchoring strength and surface shape and grating pitch. A measurement of the homeotropic anchoring energy has been undertaken by comparing the voltage response as a function of cell gap; we find the homeotropic anchoring energies can be varied in the range 0.5 to 4 (10-44 J m-2).

    Item Type: Article
    Research Institute, Centre or Group - Does NOT include content added after October 2018: Materials and Engineering Research Institute > Polymers Nanocomposites and Modelling Research Centre > Materials and Fluid Flow Modelling Group
    Identification Number: https://doi.org/10.1103/PhysRevE.82.021702
    Depositing User: Ann Betterton
    Date Deposited: 29 Sep 2010 11:03
    Last Modified: 18 Mar 2021 07:55
    URI: http://shura.shu.ac.uk/id/eprint/2523

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics