Simulation of stress-assisted localised corrosion using a Cellular Automaton Finite Element approach

FATOBA, O.O., LEIVA-GARCIA, R., LISHCHUK, Sergey, LARROSA, N.O. and AKID, R. (2018). Simulation of stress-assisted localised corrosion using a Cellular Automaton Finite Element approach. Corrosion Science, 137, 83-97.

[img]
Preview
PDF
art2018b-accepted.pdf - Accepted Version
Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview
Official URL: https://www.sciencedirect.com/science/article/pii/...
Link to published version:: https://doi.org/10.1016/j.corsci.2018.03.029
Related URLs:

    Abstract

    In this paper, the overall corrosion damage process is modelled sequentially using cellular automata (CA) to describe the localised corrosion component, and finite element analysis (FEA) to account for the mechanical component resulting from the stress concentration effect of the corrosion defect (pit). Synchronous execution of the CA and FEA, and provision of feedback between both provides a good approximation of stress-assisted pit development. Qualitative and quantitative comparison of simulation results with experimental measurements show good agreement. In particular, the model shows that mechanical effects, notably plastic strain, accelerates the rate of development of localised corrosion.

    Item Type: Article
    Research Institute, Centre or Group - Does NOT include content added after October 2018: Materials and Engineering Research Institute > Polymers Nanocomposites and Modelling Research Centre > Materials and Fluid Flow Modelling Group
    Identification Number: https://doi.org/10.1016/j.corsci.2018.03.029
    Page Range: 83-97
    Depositing User: Sergey Lishchuk
    Date Deposited: 21 Mar 2018 09:11
    Last Modified: 18 Mar 2021 05:28
    URI: http://shura.shu.ac.uk/id/eprint/18997

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics