Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence

JARCHI, D., WONG, C., KWASNICKI, R.M., HELLER, Ben, TEW, G.A. and YANG, G.Z. (2014). Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence. IEEE Transactions on Biomedical Engineering, 61 (4), 1261-1273.

gait2013.pdf - Accepted Version
All rights reserved.

Download (5MB) | Preview
Official URL:
Link to published version::


This paper presents a new approach to gait analysis and parameter estimation from a single miniaturised earworn sensor embedded with a triaxial accelerometer. Singular spectrum analysis (SSA) combined with the longest common subsequence (LCSS) algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the accelerometer to estimate parameters including swing, stance and stride times. Rather than only using local features of the raw signals, the periodicity of the signals is also taken into account. The hypotheses tested by this study include: 1) how accurate is the ear-worn sensor in terms of gait parameter extraction compared to the use of an instrumented treadmill; 2) does the ear-worn sensor provide a feasible option for assessment and quantification of gait pattern changes. Key gait events for normal subjects such as heel contact and toe off are validated with a high-speed camera, as well as a force-plate instrumented treadmill. Ten healthy adults walked for 20 minutes on a treadmill with an increasing incline of 2% every 2 minutes. The upper and lower limits of the absolute errors using 95% confidence intervals for swing, stance and stride times were obtained as 35.5±3.99ms, 36.9 ± 3.84ms, and 17.9 ± 2.29ms, respectively.

Item Type: Article
Additional Information: © 2014 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Research Institute, Centre or Group - Does NOT include content added after October 2018: Centre for Sports Engineering Research
Identification Number:
Page Range: 1261-1273
Depositing User: Carole Harris
Date Deposited: 07 May 2014 16:20
Last Modified: 17 Mar 2021 22:45

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics