Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence

JARCHI, D., WONG, C., KWASNICKI, R.M., HELLER, Ben, TEW, G.A. and YANG, G.Z. (2014). Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence. IEEE Transactions on Biomedical Engineering, 61 (4), 1261-1273. [Article]

Documents
7896:557546
[thumbnail of gait2013.pdf]
Preview
PDF
gait2013.pdf - Accepted Version
Available under License All rights reserved.

Download (5MB) | Preview
Abstract
This paper presents a new approach to gait analysis and parameter estimation from a single miniaturised earworn sensor embedded with a triaxial accelerometer. Singular spectrum analysis (SSA) combined with the longest common subsequence (LCSS) algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the accelerometer to estimate parameters including swing, stance and stride times. Rather than only using local features of the raw signals, the periodicity of the signals is also taken into account. The hypotheses tested by this study include: 1) how accurate is the ear-worn sensor in terms of gait parameter extraction compared to the use of an instrumented treadmill; 2) does the ear-worn sensor provide a feasible option for assessment and quantification of gait pattern changes. Key gait events for normal subjects such as heel contact and toe off are validated with a high-speed camera, as well as a force-plate instrumented treadmill. Ten healthy adults walked for 20 minutes on a treadmill with an increasing incline of 2% every 2 minutes. The upper and lower limits of the absolute errors using 95% confidence intervals for swing, stance and stride times were obtained as 35.5±3.99ms, 36.9 ± 3.84ms, and 17.9 ± 2.29ms, respectively.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item