Structural phase transitions in Ti-doped Bi1-xNdxFeO3 ceramics

KALANTARI, Kambiz, STERIANOU, Iasmi, SINCLAIR, Derek C., BINGHAM, Paul, POKORNÝ, Jan and REANEY, Ian M. (2012). Structural phase transitions in Ti-doped Bi1-xNdxFeO3 ceramics. Journal of Applied Physics, 111 (6), 064107.

Full text not available from this repository.
Official URL:
Link to published version::


Recently, it was demonstrated that donor doping with Ti on the B-site significantly reduces the conductivity in Bi0.85Nd0.15FeO3 ceramics [Kalantari et al., Adv. Funct. Mater. 21, 3737 (2011)]. In this contribution, the phase transitions as a function of Nd concentration are investigated in 3% Ti doped Bi1-xNdxFeO3 ceramics. Paraelectric (PE) to ferroelectric (FE) transitions were observed for compositions with x ≤ 0.125 which manifested themselves as peaks in permittivity. In contrast, PE to antiferroelectric (AFE) transitions for 0.15 ≤ x ≤ 0.20 gave rise to a step-like change in the permittivity with x = 0.25 exhibiting no sharp anomalies and remaining PE until room temperature. The large volume change at the PE to FE/AFE transitions, reported by Levin and co-workers [Phys. Rev. B 81, 020103 (2011)] and observed here by dilatometry, coupled with their first-order character constrain the transitions to occur uniformly throughout the material in an avalanche-like manner. Hence, the anomalies in DSC, permittivity and thermal expansion occur over a commensurately narrow temperature interval. However, despite the large volume change and eye-catching anomalies in DSC, the latent heats for the transitions in Ti-doped Bi1-xNdxFeO3 are similar to Pb(Zr,Ti)O3 (1–3 kJ/mol) with each an order of magnitude greater than BaTiO3 (∼0.2 kJ/mol). A broad frequency dependent dielectric anomaly of unknown origin in the temperature range 250–450 °C was also observed in all samples.

Item Type: Article
Research Institute, Centre or Group - Does NOT include content added after October 2018: Materials and Engineering Research Institute > Structural Materials and Integrity Research Centre > Centre for Corrosion Technology
Identification Number:
Page Range: 064107
Depositing User: Hilary Ridgway
Date Deposited: 31 Aug 2012 10:56
Last Modified: 18 Mar 2021 10:31

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics