Benchtop Zone Refinement of Simulated Future Spent Nuclear Fuel Pyroprocessing Waste.

SCRIMSHIRE, Alex, BACKHOUSE, Daniel, DENG, Wei, MANN, Colleen, OGDEN, Mark D, SHARRAD, Clint A, HARRISON, Mike T, MCKENDRICK, Donna and BINGHAM, Paul A (2024). Benchtop Zone Refinement of Simulated Future Spent Nuclear Fuel Pyroprocessing Waste. Materials, 17 (8): 1781.

materials-17-01781-v2.pdf - Published Version
Creative Commons Attribution.

Download (10MB) | Preview
Official URL:
Link to published version::


The UK’s adoption of pyroprocessing of spent nuclear fuel as an alternative to the current aqueous processing routes requires a robust scientific underpinning of all relevant processes. One key process is the clean-up of the contaminated salt from the electroreducing and electrorefining processes. A proposed method for this clean-up is zone refining, whereby the tendency of the contaminants to remain in the liquid phase during melting and freezing is exploited to ‘sweep’ the contaminants to one end of the sample. Experiments were performed, utilising off-the-shelf laboratory equipment, to demonstrate the feasibility of zone refining for clean-up of electroreducing and electrorefining wastes. This was successful for the electrorefining simulant samples, with effective segregation coefficient, keff, values, which provide a measure of the degree of separation in the sample, between 0 and 1. Lower values indicate greater separation, with values of as low as 0.542 achieved here, corresponding to a reduction in RECl3 content from 10.0 wt. % to 8.4 wt. % (for 80% salt reuse). Due to difficulties in obtaining a fully homogeneous electroreducing simulant waste, it was not possible to demonstrate the feasibility of zone refining using the current experimental setup. Further research is required to elucidate the correct preparation conditions for production of homogeneous electroreducing waste simulants.

Item Type: Article
Uncontrolled Keywords: 03 Chemical Sciences; 09 Engineering; 34 Chemical sciences; 40 Engineering
Identification Number:
SWORD Depositor: Symplectic Elements
Depositing User: Symplectic Elements
Date Deposited: 15 Apr 2024 14:55
Last Modified: 10 May 2024 13:45

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics