Structure and Magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3

HASANLI, Nijat, SCRIMSHIRE, Alex, BINGHAM, Paul, PALGRAVE, Robert and HAYWARD, Michael (2020). Structure and Magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3. Dalton Transactions: an international journal of inorganic chemistry, 49, 11346-11353. [Article]

Documents
26857:555882
[thumbnail of Bingham_StructureAndMagnetism(VoR).pdf]
Preview
PDF
Bingham_StructureAndMagnetism(VoR).pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview
26857:553919
[thumbnail of Figures]
Preview
PDF (Figures)
supporting-information-accepted.pdf - Supplemental Material
Available under License Creative Commons Attribution Non-commercial.

Download (594kB) | Preview
Abstract
Synchrotron X-ray powder diffraction data indicate that La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3 adopt distorted perovskite structures (space group Pnma) with A-site and B-site cation disorder. A combination of XPS and 57Fe Mössbauer data indicate the transition metal cations in the two phases adopt Mn3+/Rh4+ and Fe3+/Rh4+ oxidation state combinations respectively. Transport data indicate both phases are insulating, with ρ vs. T dependences consistent with 3D variable-range hopping. Magnetisation data reveal that La0.5Sr0.5Mn0.5Rh0.5O3 adopts a ferromagnetic state below Tc ∼ 60 K, which is rationalized on the basis of coupling via a dynamic Jahn–Teller distortion mechanism. In contrast, magnetic data reveal La0.5Sr0.5Fe0.5Rh0.5O3 undergoes a transition to a spin-glass state at T ∼ 45 K, attributed to frustration between nearest-neighbour Fe–Rh and next-nearest-neighbour Fe–Fe couplings.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item