Personalized Breast Cancer Treatments Using Artificial Intelligence in Radiomics and Pathomics

TRAN, William, JERZAK, Katarzyna, LU, Fang-I, KLEIN, Jonathan, TABBARAH, Sami, LAGREE, Andrew, WU, Tina, ROSADO-MENDEZ, Ivan, LAW, Ethan, SAEDNIA, Khadijeh and SADEGHI-NAINI, Ali (2019). Personalized Breast Cancer Treatments Using Artificial Intelligence in Radiomics and Pathomics. Journal of Medical Imaging and Radiation Sciences, 50 (4), S32-S41.

Full text not available from this repository.
Official URL:
Link to published version::


Progress in computing power and advances in medical imaging over recent decades have culminated in new opportunities for artificial intelligence (AI), computer vision, and using radiomics to facilitate clinical decision-making. These opportunities are growing in medical specialties, such as radiology, pathology, and oncology. As medical imaging and pathology are becoming increasingly digitized, it is recently recognized that harnessing data from digital images can yield parameters that reflect the underlying biology and physiology of various malignancies. This greater understanding of the behaviour of cancer can potentially improve on therapeutic strategies. In addition, the use of AI is particularly appealing in oncology to facilitate the detection of malignancies, to predict the likelihood of tumor response to treatments, and to prognosticate the patients' risk of cancer-related mortality. AI will be critical for identifying candidate biomarkers from digital imaging and developing robust and reliable predictive models. These models will be used to personalize oncologic treatment strategies, and identify confounding variables that are related to the complex biology of tumors and diversity of patient-related factors (ie, mining “big data”). This commentary describes the growing body of work focussed on AI for precision oncology. Advances in AI-driven computer vision and machine learning are opening new pathways that can potentially impact patient outcomes through response-guided adaptive treatments and targeted therapies based on radiomic and pathomic analysis.

Item Type: Article
Additional Information: ** Article version: AM ** Embargo end date: 12-12-2020 ** From Elsevier via Jisc Publications Router ** Licence for AM version of this article starting on 12-12-2020: **Journal IDs: issn 19398654 **History: issue date 31-12-2019; published_online 12-12-2019
Identification Number:
Page Range: S32-S41
SWORD Depositor: Justine Gavin
Depositing User: Justine Gavin
Date Deposited: 16 Dec 2019 10:37
Last Modified: 18 Mar 2021 03:03

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics