Sentiment aware fake news detection on online social networks

AJAO, Seun, BHOWMIK, Deepayan and ZARGARI, Shahrzad (2019). Sentiment aware fake news detection on online social networks. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). [Article]

Documents
24009:525506
[thumbnail of Ajao_fake_news_(AM).pdf]
Preview
PDF
Ajao_fake_news_(AM).pdf - Accepted Version
Available under License All rights reserved.

Download (380kB) | Preview
Abstract
Messages posted to online social networks (OSNs) causes a recent stir due to the intended spread of fake news or rumor. In this work, we aim to understand and analyse the characteristics of fake news especially in relation to sentiments, to determine the automatic detection of fake news and rumors. Based on empirical observation, we propose a hypothesis that there exists a relation between a fake message/rumour and the sentiment of the texts posted online. We verify our hypothesis by comparing with the state-of-the-art baseline text-only fake news detection methods that do not consider sentiments. We performed experiments on standard Twitter fake news dataset and show good improvements in detecting fake news/rumor.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item