Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts

GREAVES, G. N., WILDING, Martin, FEARN, S., LANGSTAFF, D., KARGL, F., COX, S., VAN, Q. Vu, MAJERUS, O., BENMORE, C. J., WEBER, R., MARTIN, C. M. and HENNET, L. (2008). Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science, 322 (5901), 566-570. [Article]

Abstract
We combine small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) with aerodynamic levitation techniques to study in situ phase transitions in the liquid state under contactless conditions. At very high temperatures, yttria-alumina melts show a first-order transition, previously inferred from phase separation in quenched glasses. We show how the transition coincides with a narrow and reversible maximum in SAXS indicative of liquid unmixing on the nanoscale, combined with an abrupt realignment in WAXS features related to reversible shifts in polyhedral packing on the atomic scale. We also observed a rotary action in the suspended supercooled drop driven by repetitive transitions (a polyamorphic rotor) from which the reversible changes in molar volume (1.2 ± 0.2 cubic centimeters) and entropy (19 ± 4 joules mole–1 kelvin–1) can be estimated.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item