Deep learning for healthcare applications based on physiological signals: A review

FAUST, Oliver, HAGIWARA, Yuki, HONG, Tan Jen, LIN, Oh Shu and ACHARYA, U Rajendra (2018). Deep learning for healthcare applications based on physiological signals: A review. Computer Methods and Programs in Biomedicine, 161, 1-13. [Article]

Documents
21073:520599
[thumbnail of Deep learning for healthcare applications based on physiological signals a review.pdf]
Preview
PDF
Deep learning for healthcare applications based on physiological signals a review.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview
Abstract
Background and objective: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. Methods: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. Results: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. Conclusions: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosis
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item