A study of the microstructural and mechanical properties of novel spring steels.

HARRIS-POINTER, Cheryl Faye. (1998). A study of the microstructural and mechanical properties of novel spring steels. Doctoral, Sheffield Hallam University (United Kingdom).. [Thesis]

Documents
19763:460690
[thumbnail of Version of Record]
Preview
PDF (Version of Record)
10697065.pdf - Accepted Version
Available under License All rights reserved.

Download (28MB) | Preview
Abstract
This work is concerned with track spring components manufactured by Pandrol from a SiMn alloy in the quenched and tempered condition. For many years low to medium carbon based spring steel has been manufactured via an oil quench temper route producing components with suitable mechanical and microstructural properties. The current problem facing the spring manufacturer with the traditional heat treatment route involve a number of technical issues including a sensitivity to temper embrittlement and susceptibility to stress corrosion cracking. In addition, economic factors and component handling problems led Pandrol to seek solutions via the manufacturing process and materials selection. A programme of research was therefore proposed to identify a possible replacement alloy system and production route which could exclude the costly tempering operation and instil a degree of production control. The initial program of work involved the examination of several alloy systems based loosely around three separate microstructures, i.e. a fully pearlitic, bainitic and martensitic microstructure. In turn, each alloy was examined and assessed with respect to their suitability for the industrial application given their mechanical properties.From the initial research, a selected number of promising alloy systems were examined further, namely a chromium molybdenum alloy, salt bath quenched to produce a bainitic microstructure, a water quenched low carbon chromium and low carbon boron martensitic type alloy. The low carbon boron alloy was considered the most promising, with similar mechanical properties in both the plain bar and clip form compared to the existing Pandrol alloy. However, concern was raised over the amount of plastic deformation (permanent set) suffered by a clip component whilst in service. In response to this, the use of cold work was examined to further strengthen the microstructure with notable success.On identifying several possible alternative alloy systems to replace the existing oil quenched and tempered variant, the second stage of this research work concentrated on understanding the degree and type of microstructural strengthening involved on each particular alloy system. The effect of plastic deformation in each alloy type was also thoroughly investigated via transmission electron microscopy / true stress strain analysis and an attempt was made to relate microstructural changes to obtained mechanical properties. In addition the work hardening characteristics of the tempered microstructure were investigated, and compared to the straight through hardened variants. Qualitative Transmission Electron Microscopy studies confirmed that dislocation density / mobility played a crucial role in determining the work hardening rate. This project has studied the phenomena of work hardening in body centred cubic materials in the through hardened and untempered condition. A series of novel alloys have been developed with strengths equal to or above an oil quenched and tempered counterpart. However, these new alloys do not require a temper treatment thereby removing the risk of temper embrittlement. A clearer understanding of the work hardening characteristics has been developed through an assessment of the work hardening coefficient of these material variants.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item