CHALLONER, Nicholas Ian. (2000). Novel oligomeric and polymeric materials based upon the dibenzotetraaza[14]annulenes. Doctoral, Sheffield Hallam University (United Kingdom).. [Thesis]
Documents
19439:443854
PDF (Version of Record)
10694320.pdf - Accepted Version
Available under License All rights reserved.
10694320.pdf - Accepted Version
Available under License All rights reserved.
Download (5MB) | Preview
Abstract
The class of compounds known as the dibenzotetraaza[14]annulenes have been of particular interest over the past 25 years, with the initial impetus for research being the relationship they hold with the naturally occuring porphyrins.The main aim of the work undertaken was to establish the potential of dibenzotetraaza[14]annulene type systems for the development of novel materials whose applicable behaviour was likely to fall into one of the following three categories; liquid crystals, organic conductors, and chelating systems. Additionally the chemistry involved with the synthesis of these types of materials was interesting in its own right and provided a platform for the author to increase his own knowledge of chemistry. The research undertaken may be broadly classified into the following areas: 1. The preparation of linear Schiff base polymers, 2. The preparation of dibenzotetraaza[14]annulenes (metal complexes and free ligands), 3. The preparation of 1-D and 2-D unsymmetrical macrocyclic complexes, and 4. The preparation of polymeric materials incorporating dibenzotetraaza[14]annulenes both as part of the polymeric backbone and as pendant side chains in a comb type polymer. 1. The preparation of linear Schiff base polymers. The Schiff base condensation of phenylenediamines with malondialdehydes has enabled the preparation of materials of the type illustrated below. [chemical formula]. Examination of the materials by differential scanning calorimetry has shown that many of the materials exhibit interesting thermal transitions from one crystalline state to another. However the use of thermal microscopy has not shown any of these phases to be liquid crystalline transitions. 2. The preparation of dibenzotetraaza[14]annulenes (metal complexes and free ligands). An extensive array of dibenzotetraaza[14]annulenes have been prepared, generally by a one step process involving the reaction of ortho-phenylenediamine and various 2-substituted malondialdehydes in the presence of a suitable acid catalyst and solvent. [chemical formula]. 3. The preparation of 1-D and 2-D unsymmetrical macrocyclic complexes. The introduction of unsymmetricality into the dibenzotetraaza[14]annulenes has been of interest since dipole-dipole interactions between molecules may lead to enhanced crystalline stacking, which in turn has a direct effect on any liquid crystalline or semiconducting properties the material may exhibit. Consequently the preparation of unsymmetrical dibenzotetraaza[14]annulenes has been undertaken, which has often required extended stepwise synthetic reaction pathways involving the use of protecting reagents. Small quantities of pure materials have been prepared and are believed to be the first of their type. 4. The preparation of polymeric dibenzotetraaza[14]annulenes. The incorporation of dibenzotetraaza[14]annulenes into a polymeric system has been examined in two ways. The initial study concentrated on the incorporation of the macrocycle directly into the polymer backbone and involved the reaction of suitably functionalised dibenzotetraaza[14]annulenes with linking groups such as para-phenylenediamine. The additional study has focussed on a method of forming polymers which include the macrocyclic complexes as pendant side chains in a comb type polymeric arrangement (illustrated below). [chemical formula]. At present the prepartion of a polymer of this type has not been achieved. However an extensive study into the attachment of groups to the macrocycles which are capable of undergoing polymerisation has been undertaken which has established the potential use of the Gabriel synthesis of amines and the Wittig reaction as potential methods of attachment.
More Information
Statistics
Downloads
Downloads per month over past year
Share
Actions (login required)
View Item |