Crowd anomaly detection for automated video surveillance

WANG, Jing and XU, Zhijie (2015). Crowd anomaly detection for automated video surveillance. In: 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15). IET. [Book Section]

Documents
18875:401865
[thumbnail of camera ready.pdf]
Preview
PDF
camera ready.pdf - Accepted Version
Available under License All rights reserved.

Download (704kB) | Preview
Abstract
Video-based crowd behaviour detection aims at tackling challenging problems such as automating and identifying changing crowd behaviours under complex real life situations. In this paper, real-time crowd anomaly detection algorithms have been investigated. Based on the spatio-temporal video volume concept, an innovative spatio-temporal texture model has been proposed in this research for its rich crowd pattern characteristics. Through extracting and integrating those crowd textures from surveillance recordings, a redundancy wavelet transformation-based feature space can be deployed for behavioural template matching. Experiment shows that the abnormality appearing in crowd scenes can be identified in a real-time fashion by the devised method. This new approach is envisaged to facilitate a wide spectrum of crowd analysis applications through automating current Closed-Circuit Television (CCTV)-based surveillance systems.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item