Experimental thermal characterization of DBD plasma actuators

RODRIGUES, F. F., PASCOA, J. C. and TRANCOSSI, Michele (2017). Experimental thermal characterization of DBD plasma actuators. In: ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 1: advances in aerospace technology. ASME.

Full text not available from this repository.
Official URL: http://proceedings.asmedigitalcollection.asme.org/...
Link to published version:: https://doi.org/10.1115/imece2017-70541


DBD plasma actuators have several applications within the field of active flow control. Separation control, wake control, aircraft noise reduction, modification of velocity fluctuations or boundary layer control are just some examples of their applications. They present several attractive features such as, their simple construction, very low mass, fast response, low power consumption and robustness. Besides their aerodynamic applications, these devices have also possible applications within the field of heat transfer, for example film cooling applications. However, due to the extremely high electric fields in the plasma region and consequent impossibility of applying intrusive techniques, there is a relative lack of information about DBDs thermal characteristics. In an attempt to contradict this scenario, this work describes the thermal behaviour of DBD plasma actuators. The total power consumed, the fraction of power that is dissipated as heat energy and the dielectric temperature variation due to the plasma operation are some parameters with great interest in any plasma actuator applications. Thus, these parameters were quantified and the results were presented and discussed. Infra-red thermography measurements were performed in order to obtain the temperature distribution of the dielectric layer. During this work we analysed DBD plasma actuators with different dielectric thicknesses and also with different dielectric materials, whose thermal behaviour was not reported in the literature yet. Conclusions were taken in order to extend the fundamental knowledge on the thermal aspects of the DBD plasma actuators.

Item Type: Book Section
Additional Information: Paper presented at the ASME 2017 International Mechanical Engineering Congress and Exposition IMECE2017. Tampa, Florida, USA, November 3–9, 2017. Paper No. IMECE2017-70541, pp. V001T03A004. ** From Crossref via Jisc Publications Router.
Research Institute, Centre or Group - Does NOT include content added after October 2018: Materials and Engineering Research Institute > Engineering Research
Identification Number: https://doi.org/10.1115/imece2017-70541
SWORD Depositor: Margaret Boot
Depositing User: Margaret Boot
Date Deposited: 23 Jan 2018 12:44
Last Modified: 18 Mar 2021 16:30
URI: https://shura.shu.ac.uk/id/eprint/18443

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics