A glucose biosensor based on novel Lutetium bis-phthalocyanine incorporated silica-polyaniline conducting nanobeads

AL-SAGUR, H., KOMATHI, S., KARAKAŞ, H., ATILLA, D., GÜREK, A.G., BASOVA, T., FARMILO, Nick and HASSAN, Aseel (2018). A glucose biosensor based on novel Lutetium bis-phthalocyanine incorporated silica-polyaniline conducting nanobeads. Biosensors & bioelectronics, 102, 637-645. [Article]

Documents
17705:330078
[thumbnail of Farmilo-GlucoseBiosensorBasedNovelLutetium(AM).pdf]
Preview
PDF
Farmilo-GlucoseBiosensorBasedNovelLutetium(AM).pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview
Abstract
The facile preparation of highly sensitive electrochemical bioprobe based on lutetium 13 phthalocyanine incorporated silica nanoparticles (SiO2(LuPc2)) grafted with Poly(vinyl 14 alcohol-vinyl acetate) itaconic acid (PANI(PVIA)) doped polyaniline conducting nanobeads 15 (SiO2(LuPc2)PANI(PVIA)-CNB) is reported. The preparation of CNB involves two stages (i) 16 pristine synthesis of LuPc2 incorporated SiO2 and PANI(PVIA); (ii) covalent grafting of 17 PANI(PVIA) onto the surface of SiO2(LuPc2). The morphology and other physico-chemical 18 characteristics of CNB were investigated. The scanning electron microscopy images show 19 that the average particle size of SiO2(LuPc2)PANI(PVIA)-CNB was between 180-220 nm. 20 The amperometric measurements showed that the fabricated SiO2(LuPc2)PANI(PVIA)-21 CNB/GOx biosensor exhibited wide linear range (1-16 mM) detection of glucose with a low 22 detection limit of 0.1 mM. SiO2(LuPc2)PANI(PVIA)-CNB/GOx biosensor exhibited high 23 sensitivity (38.53 μA mM−1 cm−2) towards the detection of glucose under optimized 24 conditions. Besides, the real (juice and serum) sample analysis based on a standard addition 25 method and direct detection method showed high precision for measuring glucose at 26 SiO2(LuPc2)PANI(PVIA)-CNB/GOx biosensor. The SiO2(LuPc2)PANI(PVIA)-CNB/GOx 27 biosensor stored under refrigerated condition over a period of 45 days retains ~ 96.4 % 28 glucose response current.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item