STACEY, Peter, MADER, Kerstin and SAMMON, Chris (2017). Feasibility of the quantification of respirable crystalline silica by mass on aerosol sampling filters using Raman microscopy. Journal of Raman Spectroscopy, 48 (5), 720-725. [Article]
Documents
17344:305490
PDF
Stacey_et_al-2017-Journal_of_Raman_Spectroscopy.pdf - Published Version
Available under License Creative Commons Attribution.
Stacey_et_al-2017-Journal_of_Raman_Spectroscopy.pdf - Published Version
Available under License Creative Commons Attribution.
Download (373kB) | Preview
Abstract
Airborne respirable crystalline silica (RCS) is a hazard that can affect the health of workers and more sensitive measurements are needed for the assessment of worker exposure. To investigate the use of Raman microscopy for the analysis of RCS particulate collected on filters, aliquots of quartz or cristobalite suspended in isopropanol were pipetted onto silver filters. Samples were measured by arbitrarily selecting positions along the filter and collecting spectra at 50 discrete points. The calculated limits of quantification on test samples were between ~0.066 – 0.161 µg and 0.106 – 0.218 µg for quartz and cristobalite respectively. Three respirable quartz calibration dusts (A9950, NIST 1878 and Quin B) with different mass median aerodynamic particle sizes obtained similar Raman response relationships per unit mass. The difference between NIST 1878 and Quin B was not significant (p=0.22). The intermediate measurement precision of replicate samples was 10 - 25% over the measured range for quartz (0.25 – 10 µg) and could potentially be improved. Results from mixtures of quartz and cristobalite were within 10 % of their theoretical values. Results from samples of 5 % quartz in calcite were close to the theoretical quartz mass. The upper measurement limit for a mixture of 20 % RCS in the light absorbing mineral hematite (Fe2O3) was 5 µg. These data show that Raman spectroscopy is a viable option for the quantification of the mass of respirable crystalline silica on filters with a limit of detection approaching 1/10th of that obtained with other techniques. The improvement in sensitivity may enable the measurement of particulate in samples from low concentration environments (e.g. inside a mask) or from miniature samplers operating at low flow rates.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |