Finitely represented closed orbit subdynamics for commuting automorphisms

MILES, Richard (2010). Finitely represented closed orbit subdynamics for commuting automorphisms. Ergodic Theory and Dynamical Systems, 30 (6), 1787-1802. [Article]

Abstract
The purpose of this paper is to exhibit highly structured subdynamics for a class of non-expansive algebraic ℤd-actions based on the closed orbits of elements of an action. This is done using dynamical Dirichlet series to encode orbit counts. It is shown that there is a distinguished group homomorphism from ℤd onto a finite abelian group that controls the form of the Dirichlet series of elements of an action and that these series have common analytic properties. Corresponding orbit growth asymptotics are subsequently investigated.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item