NABOK, Aleksey, WALCH, N.J., DUTTON, S, DAVIS, F. and HIGSON, S.P.J. (2017). Graphene-based LbL deposited films: further study of electrical and gas sensing properties. MATEC Web of Conferences, 98, 04001. [Article]
Documents
15391:148732
PDF
Nabok - Graphene-based LbL deposited film (VoR).pdf - Published Version
Available under License Creative Commons Attribution.
Nabok - Graphene-based LbL deposited film (VoR).pdf - Published Version
Available under License Creative Commons Attribution.
Download (610kB) | Preview
Abstract
Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS) were utilised to construct thin films using layer-by-layer (LbL) electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH) or graphene-CTAB with polyanions (PSS). Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm) of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10%) in electrical conductivity upon exposure to electro-active gases such as HCl and NH3.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |