Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide

FORBES, Sarah, DOBSON, Curtis B., HUMPHREYS, Gavin J. and MCBAIN, Andrew J. (2014). Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrobial Agents and Chemotherapy, 58 (10), 5809-5817. [Article]

Documents
14500:97888
[thumbnail of 5809.full.pdf]
Preview
PDF
5809.full.pdf - Published Version
Available under License Creative Commons Attribution.

Download (434kB) | Preview
Abstract
Microbicides (biocides) play an important role in the prevention and treatment of infections. While there is currently little evidence for in-use treatment failures attributable to acquired reductions in microbicide susceptibility, the susceptibility of some bacteria can be reduced by sublethal laboratory exposure to certain agents. In this investigation, a range of environmental bacterial isolates (11 genera, 18 species) were repeatedly exposed to four microbicides (cetrimide, chlorhexidine, polyhexamethylene biguanide [PHMB], and triclosan) and a cationic apolipoprotein E-derived antimicrobial peptide (apoEdpL-W) using a previously validated exposure system. Susceptibilities (MICs and minimum bactericidal concentrations [MBCs]) were determined before and after 10 passages (P10) in the presence of an antimicrobial and then after a further 10 passages without an antimicrobial to determine the stability of any adaptations. Bacteria exhibiting >4-fold increases in MBCs were further examined for alterations in biofilm-forming ability. Following microbicide exposure, ≥4-fold decreases in susceptibility (MIC or MBC) occurred for cetrimide (5/18 bacteria), apoEdpL-W (7/18), chlorhexidine (8/18), PHMB (8/18), and triclosan (11/18). Of the 34 ≥4-fold increases in the MICs, 15 were fully reversible, 13 were partially reversible, and 6 were nonreversible. Of the 26 ≥4-fold increases in the MBCs, 7 were fully reversible, 14 were partially reversible, and 5 were nonreversible. Significant decreases in biofilm formation in P10 strains occurred for apoEdpL-W (1/18 bacteria), chlorhexidine (1/18), and triclosan (2/18), while significant increases occurred for apoEdpL-W (1/18), triclosan (1/18), and chlorhexidine (2/18). These data indicate that the stability of induced changes in microbicide susceptibility varies but may be sustained for some combinations of a bacterium and a microbicide.
More Information
Statistics

Downloads

Downloads per month over past year

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item